Tìm các số nguyên x,y thoả mãn đẳng thức: \(2xy^2+x+y+1=x^2+2y^2+xy\)
chứng minh rằng nếu các cặp x,y thoả mãn các đẳng thức :
x2-3xy+2y2+x-y=0 (1) và x2-2xy+y2-5x+7y=0 (2) thì cũng thoả mãn đẳng thức xy-12x+15y=0
Đặt \(xy-12x+15y\)là (*)
Từ phương trình (1) ta có \(x^2-3xy+2y^2+x-y=0\Leftrightarrow\left(x-y\right)\left(x-2y\right)+\left(x-y\right)=0\)
\(\Leftrightarrow\left(x-y\right)\left(x-2y+1\right)=0\Leftrightarrow\orbr{\begin{cases}x=y\\x=2y-1\end{cases}}\)
Với \(x=y\)thay vào (2) ta có \(x^2-2x^2+x^2-5x+7x=0\Leftrightarrow x=0\Rightarrow x=y=0\)
Thay \(x=y=0\)vào (*) ta thấy 0.0-12.0+15.0=0(tm)
Với \(x=2y-1\Rightarrow\left(2y-1\right)^2-2\left(2y-1\right)y+y^2-5\left(2y-1\right)+7y=0\)
\(\Leftrightarrow4y^2-4y+1-4y^2+2y+y^2-10y+5+7y=0\)
\(\Leftrightarrow y^2-5y+6=0\Leftrightarrow\left(y-2\right)\left(y-3\right)=0\Leftrightarrow\orbr{\begin{cases}y=2\\y=3\end{cases}\Leftrightarrow\orbr{\begin{cases}x=3\\x=5\end{cases}}}\)
Với \(x=3;y=2\)thay vào (*) ta thấy \(3.2-12.3+15.0=0\left(tm\right)\)
Với \(x=5;y=3\)thay vào (*) ta thấy \(5.3-12.5+15.3=0\left(tm\right)\)
Vậy .....
Tìm x,y nguyên thoả mãn đẳng thức 2y2x+x+y+1=x2+2y2+xy
Ta có: 2y2 + x + y + 1 = x 2 + 2y2 + xy
2y2(x - 1) – x(x - 1) – y(x - 1) + 1 = 0 (1)
-Vì x = 1 không phải là nghiệm của (1). Khi đó chia hai vế của (1) cho x – 1, ta có: (2)
-Với x, y nguyên. Suy ra: nguyên nên x – 1 = 1 hoặc x – 1 = -1
-Thay x = 2 và x = 0 vào (2), ta có: y = 1 hoặc y = và y Z.
Vậy phương trình đã cho có hai nghiệm nguyên là (2;1) và (0;1).
a.Tìm x, y nguyên biết: xy + 3x - y = 6
b. Tìm mọi số nguyên tố thoả mãn: x2 - 2y2 = 1
c. Tìm các số nguyên thoả mãn: x - y + 2xy = 7
d. Tìm x, y thuộc N biết : 25 - y2 = 8( x - 2012)2
a.Tìm x, y nguyên biết: xy + 3x - y = 6
b. Tìm mọi số nguyên tố thoả mãn: x2 - 2y2 = 1
c. Tìm các số nguyên thoả mãn: x - y + 2xy = 7
d. Tìm x, y thuộc N biết : 25 - y2 = 8( x - 2012)2
a.Tìm x, y nguyên biết: xy + 3x - y = 6
b. Tìm mọi số nguyên tố thoả mãn: x2 - 2y2 = 1
c. Tìm các số nguyên thoả mãn: x - y + 2xy = 7
d. Tìm x, y thuộc N biết : 25 - y2 = 8( x - 2012)2
Tìm các số nguyên x, y thỏa mãn đẳng thức:
\(2y^2x+x+y+1=x^2+y^2+xy\)
tìm các số nguyên x y thỏa mãn 2xy^2+x+y+1=x^2+2y^2+xy
tìm các số nguyên x,y thoả mãn đẳng thức: \(2x^2+y^2+3xy+3x+2y+2=0\)
tìm x nguyên :9x+5 là tích của 2 số nguyên liên tiếp
tìm x,y nguyên thoả mãn :xy+3x-y=6
tìm x,y nguyên thoả mãn :x2−22=1x2−2y2=1
tìm x,y nguyên thoả mãn :xy+3x-y=6
1) Giả sử: \(9x+5=n\left(n+1\right)\left(n\in Z\right)\)
\(36x+20-4n^2+4n\)
\(\Rightarrow36x+21=4n^2+4n+1\)
\(\Rightarrow3\left(12x+7\right)=\left(2n+1\right)^2\)
\(\left(2n+1\right)^2\)là số chính phương nên sẽ chia hết cho 3 => (2n+1)2 chia hết cho 9
Lại có: 12x+7 ko chia hết cho 3 => 3(12x+7) ko chia hết cho 9
Chứng tỏ không tồn tại số nguyên x nào để 9x+5=n(n+1)
2) Ta có: xy + 3x - y = 6 =>x(y+3) - y = 6
=>x(y+3) - y - 3 = 3 =>x(y+3) - (y+3) = 3
=> (y+3)(x-1) =3
Vì x, y là các số nguyên nên y+3;x-1 là các số nguyên
Ta có bảng sau:
y+3 | -3 | -1 | 1 | 3 |
y | -6 | -4 | -2 | 0 |
x-1 | -1 | -3 | 3 | 1 |
x | 0 | -2 | 4 | 2 |