Tìm tất cả các số nguyên tố p sao cho \(\frac{p^2-p-2}{2}\)là lập phương của một số tự nhiên.
Tìm tất cả các số nguyên tố p sao cho
\(\frac{p^2-p-2}{2}\)là lập phương của một số tự nhiên
Giả sử tồn tại số \(p\)thỏa mãn.
Ta đặt \(\frac{p^2-p-2}{2}=a^3\).
- \(p=2\)thỏa mãn.
- \(p>2\)do là số nguyên tố nên \(p\)lẻ.
Ta có: \(\frac{p^2-p-2}{2}=a^3\Leftrightarrow p\left(p-1\right)=2\left(a+1\right)\left(a^2-a+1\right)\)suy ra \(p\)là ước của \(a+1\)hoặc \(a^2-a+1\).
+) \(p|a+1\): \(\frac{p^2-p-2}{2}=a^3\)suy ra \(a< p\Rightarrow a+1=p\).
Thế vào cách đặt ban đầu ta được \(\frac{\left(a+1\right)^2-\left(a+1\right)-2}{2}=a^3\Leftrightarrow2a^3-a^2-a+2=0\)
\(\Leftrightarrow a=-1\)không thỏa.
+) \(p|a^2-a+1\): Đặt \(a^2-a+1=kp\)(1).
\(p\left(p-1\right)=2\left(a+1\right)\left(a^2-a+1\right)=2\left(a+1\right)kp\)
\(\Rightarrow p-1=2\left(a+1\right)k\Leftrightarrow p=2k\left(a+1\right)+1\)thế vào (1):
\(a^2-a+1=k\left[2k\left(a+1\right)+1\right]\)
\(\Leftrightarrow a^2-\left(2k^2+1\right)a-2k^2-k+1=0\)
\(\Delta=\left(2k^2+1\right)^2-4\left(-2k^2-k+1\right)=4k^4+12k^2+4k-3\).
Ta cần tìm số tự nhiên \(k\)để \(\Delta\)là số chính phương.
Ta có: \(4k^4+12k^2+4k-3>4k^4+8k^2+4=\left(2k^2+2\right)^2\)
\(4k^4+12k^2+4k-3< 4k^4+16k^2+16=\left(2k^2+4\right)^2\)
Theo nguyên lí kẹp suy ra \(4k^4+12k^2+4k-3=\left(2k^2+3\right)^2\)
\(\Leftrightarrow4k-3=9\Leftrightarrow k=3\).
Với \(k=3\): \(a^2-19a-20=0\Rightarrow a=20\Rightarrow p=127\).
Vậy \(p\in\left\{2,127\right\}\).
a)Tìm số nguyên tố p để 2p+1 là lập phương của 1 số tự nhiên
b)Tìm số nguyên tố p để 13p+1 là lập phương của 1 số tự nhiên
c)Tìm tất cả các số tự nhiên x;y sao cho x2-2y2=1
Câu a =13
Câu b =2 con câu c lam tuong tu
Tìm tất cả các số nguyên tố p sao cho \(p^2-p+1\) là lập phương của một số tự nhiên
Tìm các số nguyên tố p sao cho \(\frac{p^2-p}{2}-1\)là lập phương của một số tự nhiên.
vô câu hỏi tương tự có nhé idol , đăng bài bị trùng rồi xD
Harley chuyên Lam Sơn mới thi thì làm gì có chuyện trùng được bro(:
https://olm.vn/hoi-dap/detail/428406019268.html đui à bro ? =)
Tìm các số nguyên tố p sao cho \(\frac{p^2-p-2}{2}\) là lập phương của một số tự nhiên
Tìm các số nguyên tố p sao cho \(\frac{p^2-p-2}{2}\) là lập phương của một số tự nhiên
Tìm các số nguyên tố p sao cho \(\frac{p^2-p-2}{2}\) là lập phương của một số tự nhiên
tìm p là số nguyên tố sao cho \(\frac{p^2-p-2}{2}\) là lập phương của một số tự nhiên
tìm tất cả các số nguyên tố p để 2p+1 là lập phương của một số tự nhiên