Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
bao than đen
Xem chi tiết
Nhân Mã
Xem chi tiết
Nguyễn Phương Uyên
22 tháng 3 2018 lúc 19:32

\(A=\frac{x-13}{x+3}\inℤ\Leftrightarrow x-13⋮x+3\)

\(\Rightarrow x+3-16⋮x+3\)

      \(x+3⋮x+3\)

\(\Rightarrow16⋮x+3\)

tự làm tiếp!

b, \(A=\frac{x-13}{x+3}=\frac{x+3-16}{x+3}=\frac{x-3}{x-3}-\frac{16}{x+3}=1-\frac{16}{x+3}\)

để A đạt giá trị nhỏ nhất thì \(\frac{16}{x+3}\) lớn nhất

=> x+3 là số nguyên dương nhỏ nhất

=> x+3=1

=> x = -2

vậy x = -2 và \(A_{min}=1-\frac{16}{1}=-15\)

Đỗ Ngọc Liên
18 tháng 2 2024 lúc 20:47

Ko bt

 

Lê Duy Bảo
Xem chi tiết
do thanh thanh
Xem chi tiết
IS
27 tháng 2 2020 lúc 11:15

Cho A=

Tìm x thuộc Z để A thuộc Z

Đọc tiếp...
Được cập nhật 22 tháng 7 2018 lúc 8:16

Khách vãng lai đã xóa
hoangmai
Xem chi tiết
Tran Le Khanh Linh
22 tháng 7 2020 lúc 21:16

vào thống kê xem link nhé: 

Câu hỏi của Kim Trân Ni - Toán lớp 8 - Học toán với OnlineMath

Khách vãng lai đã xóa
TRẦN LÂM VI TRÍ
Xem chi tiết
Nguyễn Linh Chi
6 tháng 3 2019 lúc 7:59

thực hiện phép chia đa thức ta có:

\(x^3-5x^2+9x-2=\left(x^2-2x+3\right)\left(x-3\right)+7\)

=> \(A=x^2-2x+3+\frac{7}{x-3}\)

Với x thuộc Z để A thuộc Z thì \(\frac{7}{x-3}\in Z\)<=> \(7⋮\left(x-3\right)\)<=> x-3 thuộc Ư(7). Em tự làm tiếp nhé!

Nguyen Hoang Ngan
Xem chi tiết
Hồ Thu Giang
3 tháng 3 2017 lúc 21:08

Để A thuộc Z

=> x + 3 chia hết cho x - 2

=> x - 2 + 5 chia hết cho x - 2

Vì x - 2 chia hết cho x - 2

=> 5 chia hết cho x - 2

Vì x thuộc Z

=> x - 2 thuộc Z 

=> x - 2 thuộc Ư(5)

=> x - 2 thuộc {1; -1; 5; -5}

=> x thuộc {3; 1; 7; -3}

trần xuân quyến
3 tháng 3 2017 lúc 21:14

ĐIỀU KIỆN XÁC ĐỊNH: X KHÁC 2

TA có:

A thuộc Z (=) x+3 /(chia hết ) x-2

                (=) (x-2 +5) / x-2     

                  mà x-2 / x-2

                  =) 5/x-2

                  =) (x-2) thuộc Ư(5) 

GIẢI RA TA ĐƯỢC X =7; X=3; X=-3; X=1    

Utimate Robot
Xem chi tiết
Trinh Nguyễn
Xem chi tiết
Ngoc Anhh
8 tháng 10 2018 lúc 20:38

ĐKXĐ : \(x\ge0\)

\(A=\frac{3+\sqrt{x}}{\sqrt{x}}=\frac{\sqrt{x}}{\sqrt{x}}+\frac{3}{\sqrt{x}}=1+\frac{3}{\sqrt{x}}\)

Để A thuộc Z <=> \(3⋮\sqrt{x}\)

Hay \(\sqrt{x}\inƯ\left(3\right)=\left\{1;3\right\}\)

\(\Rightarrow x\in\left\{1;9\right\}\)