Tính A=1+2+5+...+\(\frac{3^{n-1}+1}{2}\)(n \(\varepsilon\)N)
Tính \(D=\left(1-\frac{1}{2^2}\right)\left(1-\frac{1}{3^2}\right)\left(1-\frac{1}{4^2}\right)...\left(1-\frac{1}{n^2}\right)\)
\(n\varepsilon N,n\ge2\)
a) tính A=\(\frac{3}{^{2^3}}+\frac{4}{2^4}+.....+\frac{100}{^{2^{100}}}\)
b) tính n\(\varepsilon\)Z sao cho 2n-3 chia hết cho n+1
Các bạn giúp mình với mình đang cần gấp
Bài 4:Tìm n\(\varepsilon\)N biết:
a.\(\frac{-1}{2}\le n< 2\)
b.\(3\le n\le\frac{25}{4}\)
c.\(\frac{-1}{5}< n\le\frac{-1}{2}\)
Tìm n \(\varepsilon\)N :\(\frac{1}{3}.2^{n-1}+2^n=\frac{7}{3}.64\)
\(\frac{1}{3}.2^{n-1}+2^n=\frac{7}{3}.64\)
\(\frac{1}{3}.2^n:2^1+2^n=\frac{7}{3}.64\)
\(2^n.\frac{1}{3}.\frac{1}{2}+2^n=\frac{7}{3}.64\)
\(2^n.\frac{1}{6}+2^n.1=\frac{7}{3}.64\)
\(2^n.\left(\frac{1}{6}+1\right)=\frac{7}{3}.64\)
\(2^n.\left(\frac{1}{6}+\frac{6}{6}\right)=\frac{7}{3}.64\)
\(2^n.\frac{7}{6}=\frac{7}{3}.64\)
\(2^n=\frac{7}{3}.64:\frac{7}{6}\)
\(2^n=\frac{7}{3}.\frac{6}{7}.64\)
\(2^n=2.64\)
\(2^n=128\)
\(2^n=2^7\Rightarrow n=7\)
\(\left(1-\frac{1}{2}\right).\left(1-\frac{1}{3}\right).\left(1-\frac{1}{4}\right)....\left(1-\frac{1}{n+1}\right)\)
n \(\varepsilon\) N
\(\left(1-\frac{1}{2}\right).\left(1-\frac{1}{3}\right).\left(1-\frac{1}{4}\right)....\left(1-\frac{1}{n+1}\right)\)
n \(\varepsilon\)N
Chứng minh rằng :
\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}<\frac{2}{3}\)với mọi \(n\varepsilon N,\) \(n\le4\)
\(\frac{1}{2^2}\)+ \(\frac{1}{3^2}\)+ \(\frac{1}{4^2}\)+......+\(\frac{1}{n^2}\)< 1 (n\(\varepsilon\)N , n>=2)