cho \(n\in N^+\) Chứng minh rằng \(2^{2^{10n+1}}+19=2^{3^{4n+1}}+3^{2^{4n+1}}+5\)là hợp số
cho n thuộc N* chứng minh (2^2)^10n+1 +19 và (2^3)^4n+1 + 5 là hợp số
cho n thuoc N* chung minh (2^2)^10n+1 +19 va (2^3)^4n+1 + 5 la hop so
1, CMR:
(32^4n+1) + (23^4n+1)+5 chia hết cho 11 với mọi STN n
2,CMR:
a, 220119^69+11969^220+69220^119 chia hết cho 11
b, 22^6n+3 chia hết cho 19 (n là STN)
c, 22^2n+1+3 chia hết cho 7 (n là STN)
d, 22^10n+1+19 là hợp số (n là STN)
3, TÌm SNT p sao cho: 2p+1 chia hết cho p
Chứng minh
a) 22^(10n+1)+19 chia hết cho 23
b) 72^(4n+1)+43^(4n+1)--65 chia het cho 100
thám tử lưng danh conan à
Chứng minh rằng: 2\(^{4n+1}\)+3\(^{4n}\)+2 là hợp số với mọi số nguyên dương n.
Với mọi số nguyên dương n. Ta có: 24n+1+34n+2=16n.2+81n+2 >5
Vì 16n có số tận cùng là 6; =>16n.2 có số tận cùng là 2
81n có số tận cùng là 1
=> 16n.2+81n+2 có số tận cùng là 5 mà 16n.2+81n+2 >5 suy ra 16n.2+81n+2 chia hết cho 5=> 24n+1+34n+2 chia hết cho 5=> 24n+1+34n+2là hợp số với mọi số nguyên dương n
Chứng minh rằng với n là số tự nhiên :
a) 34n+1 + 2 chia hết cho 5
b) 24n+1 + 3 chia hết cho 5
cho n thuộc N* .Chứng minh rằng các số sau là hợp số
a,A=(2^2^2n +1)+3 b,B=(2^2^4n+1)+7 c,C=(2^2^6n+2)+13
1. Chứng minh rằng:
a. 2^51 - 1 chia hết cho 7
b. 2^70 + 3^70 chia hết cho 13
c. 17^19 + 19^17 chia hết cho 18
d. 36^63 - 1 chia hết cho 7 nhưng không chia hết cho 37
e. 2^4n - 1 chia hết cho 15 với n thuộc N
2. Chứng minh rằng:
a. n^5 - n chia hết cho 30 với n thuộc N
b. n^4 - 10n^2 + 9 chia hết cho 384 với mọi n lẻ n thuộc Z
c. 10^n + 18n - 28 chia hết cho 27 với n thuộc N
3. Chứng minh rằng:
a. a^5 - a chia hết cho 5
b. n^3 + 6n^2 + 8n chia hết cho 48 với mọi n chẵn
c. Cho a là số nguyên tố lớn hơn 3. Chứng minh: a^2 - 1 chia hết cho 24
d. 2009^2010 không chia hết cho 2010
e. n^2 + 7n + 22 không chia hết cho 9
1)
a)251-1
=(23)17-1\(⋮\)23-1=7
Vậy 251-1\(⋮\)7
b)270+370
=(22)35+(32)35\(⋮\)22+32=13
Vậy 270+370\(⋮\)13
c)1719+1917
=(BS18-1)19+(BS18+1)17
=BS18-1+BS18+1
=BS18\(⋮\)18
d)3663-1\(⋮\)35\(⋮\)7
Vậy 3663-1\(⋮\)7
3663-1
=3663+1-2
=BS37-2\(⋮̸\)37
Vậy 3663-1\(⋮̸\)37
e)24n-1
=(24)n-1\(⋮\)24-1=15
Vậy 24n-1\(⋮\)15
1. Chứng minh rằng:
a. 2^51 - 1 chia hết cho 7
b. 2^70 + 3^70 chia hết cho 13
c. 17^19 + 19^17 chia hết cho 18
d. 36^63 - 1 chia hết cho 7 nhưng không chia hết cho 37
e. 2^4n - 1 chia hết cho 15 với n thuộc N
2. Chứng minh rằng:
a. n^5 - n chia hết cho 30 với n thuộc N
b. n^4 - 10n^2 + 9 chia hết cho 384 với mọi n lẻ n thuộc Z
c. 10^n + 18n - 28 chia hết cho 27 với n thuộc N
3. Chứng minh rằng:
a. a^5 - a chia hết cho 5
b. n^3 + 6n^2 + 8n chia hết cho 48 với mọi n chẵn
c. Cho a là số nguyên tố lớn hơn 3. Chứng minh: a^2 - 1 chia hết cho 24
d. 2009^2010 không chia hết cho 2010
e. n^2 + 7n + 22 không chia hết cho 9