Tính nhanh: C = (1+1/3).(1+1/8).(1+1/15)...(1+1/9800)
Tinh nhanh:
\(1\frac{1}{3}\times1\frac{1}{8}\times1\frac{1}{15}\times...\times1\frac{1}{9800}\)
\(1\frac{1}{3}\cdot1\frac{1}{8}\cdot1\frac{1}{15}\cdot..........\cdot1\frac{1}{9800}\)tinh nhanh
tính nhanh: \(1\frac{1}{4}\times1\frac{1}{8}\times1\frac{1}{15}\times1\frac{1}{24}\times1\frac{1}{35}\times...\times1\frac{1}{9800}\)
Tính:
\(1\frac{1}{3}.1\frac{1}{8}.1\frac{1}{15}.1\frac{1}{24}.....1\frac{1}{9800}\)
\(1\frac{1}{3}.1\frac{1}{8}.1\frac{1}{15}....1\frac{1}{9800}=\frac{4}{3}.\frac{9}{8}.\frac{16}{15}....\frac{9801}{9800}\)
\(=\frac{2.2}{1.3}.\frac{3.3}{2.4}.\frac{4.4}{3.5}....\frac{99.99}{98.100}\)
\(=\frac{2.3.4...99}{1.2.3....98}.\frac{2.3.4...99}{3.4.5...100}\)
\(=99.\frac{2}{100}=99.\frac{1}{50}=\frac{99}{50}\)
(1 + 1/3) x (1 + 1/8) x (1 +15) x.......x (1 + 1/9800)
(-1+1/3)(-1+1/8)(-1+1/15)....(-1+1/9800) . Mong các bạn làm giúp mk!
Nhận xét:
-1+1/3= 0/3=0
-1+1/8= 0/8=0
-1+1/15= 0/15=0
........
-1+1/9800=0/9800=0
Do đó ta có:-1+1/3+ -1+1/8+ -1+1/15....-1+1/9800
=0+0+0....+0
=0
-1+1/3= 0/3=0
-1+1/8= 0/8=0
-1+1/15= 0/15=0
........
-1+1/9800=0/9800=0
Do đó ta có:-1+1/3+ -1+1/8+ -1+1/15....-1+1/9800
=0+0+0....+0
=0
2/Tính nhanh
1(1/13)x1(1/8)x...x1(1/9800)
tính
1 /1/2 x 1 1/3 x 1/4 ....1 1/2017
[ 1 - 1/5 ] x [ 1 - 1/6 ] x [ 1 - 1/7 ] x [ 1 -1/8 ] x [ 1 - 1/9 ]
1 1/3 x 1 1/8 x 1 1/15 ....1 1/9800
\(1\frac{1}{3}x1\frac{1}{8}x1\frac{1}{15}x..........x1\frac{1}{9800}\)
#)Giải :
\(1\frac{1}{3}\times1\frac{1}{8}\times1\frac{1}{15}\times...\times1\frac{1}{9800}\)
\(=\frac{4}{3}\times\frac{9}{8}\times\frac{16}{15}\times...\times\frac{9801}{9800}\)
\(=\frac{2.2}{1.3}\times\frac{3.3}{2.4}\times\frac{4.4}{3.5}\times...\times\frac{99.99}{98.100}\)
\(=\frac{2.3.4.....99}{1.2.3.....98}\times\frac{2.3.4.....99}{3.4.5.....100}\)
\(=99\times\frac{2}{100}=\frac{198}{100}=\frac{99}{50}\)
\(=\frac{4}{3}\times\frac{9}{8}\times\frac{16}{15}\times...\times\frac{9801}{9800}\)
\(=\frac{2.2}{1.3}\times\frac{3.3}{2.4}\times\frac{4.4}{3.5}\times...\times\frac{99.99}{98.100}\)
\(=\frac{2.3.4.5.....99}{1.2.3.4....98}\times\frac{2.3.4.5.....99}{3.4.5.6.....100}\)
\(=\frac{99}{1}\times\frac{2}{100}\)
\(=\frac{99}{50}\)
\(1\frac{1}{3}\times1\frac{1}{8}\times1\frac{1}{15}\times........\times1\frac{1}{9800}\)
\(=\frac{4}{3}\times\frac{9}{8}\times\frac{16}{15}\times.......\times\frac{9801}{9800}\)
\(=\frac{2\times2}{1\times3}\times\frac{3\times3}{2\times4}\times\frac{4\times4}{3\times5}\times......\times\frac{99\times99}{98\times100}\)
\(=2\times\left(\frac{2}{3}\times\frac{3}{2}\times\frac{3}{4}\times\frac{4}{3}\times.....\times\frac{99}{98}\times\frac{99}{100}\right)\)
\(=2\times\frac{99}{100}\)
\(=\frac{198}{100}=\frac{99}{50}\)