Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Đặng vân anh
Xem chi tiết
Hoàng Thủy Tiên
20 tháng 7 2016 lúc 13:54

a) \(A=x^2+2x+3=x^2+2x+1+2\)

\(=\left(x+1\right)^2+2\ge2\)

Vậy A luôn dương với mọi x

b) \(B=-x^2+4x-5=-\left(x^2-4x+5\right)\)

\(=-\left(x^2-4x+2^2\right)-1\)

\(=-\left(x-2\right)^2-1\le-1\)

Vậy B luôn âm với mọi x

Đoàn Thị Huyền Đoan
20 tháng 7 2016 lúc 14:01

a)\(x^2+2x+3=\left(x^2+2x+1\right)+2=\left(x+1\right)^2+2\ge2\)

Vậy x2 +2x+3 luôn dương.

b)\(-x^2+4x-5=-\left(x^2-4x+5\right)=-\left(x^2-4x+4+1\right)=-\left[\left(x-2\right)^2+1\right]\le-1\)

Vậy -x2 +4x-5 luôn luôn âm.

Cao Minh Ngọc
7 tháng 8 lúc 16:12

a.x2+ 2x+ 3

=x2+ 2.x.1+ 12- 12+ 3

= (x+1)2 -1+3

= (x+1)2+ 2

Ta có: (x+1)≥0

           (x+1)2+ 3≥ 3>0

⇒x2+ 2x+ 3>0 mọi x

Vậy x2+ 2x+3>0 mọi x

b. -x2+ 4x- 5

= - (x2- 4x +5)

= - (x2- 2.x.2+ 22- 22+ 5)

= - ((x- 2)2- 4+ 5)

= - ((x- 2)2+1)

= -(x- 2)2 -1

Ta có: (x-2)2 ≥0

         - (x-2)2 ≤0

         - (x-2)+1≤ 1

⇒ -x2+ 4x- 5 <0 mọi x

Vậy -x2+ 4x- 5 <0 mọi x

         

Hoàng Lê Phương Thảo
Xem chi tiết
ST
6 tháng 7 2018 lúc 12:15

1/

\(M=3x^2-4x+3=3\left(x^2-\frac{4}{3}x+1\right)=3\left(x^2-2x\cdot\frac{2}{3}+\frac{4}{9}\right)+\frac{5}{3}=3\left(x-\frac{2}{3}\right)^2+\frac{5}{3}\ge\frac{5}{3}>0\)

\(N=5x^2-10x+2018=5\left(x^2-2x+1\right)+2013=5\left(x-1\right)^2+2013\ge2013>0\)

\(P=x^2+2y^2-2xy+4y+7=\left(x^2-2xy+y^2\right)+\left(y^2+4y+4\right)+3=\left(x-y\right)^2+\left(y+2\right)^2+3\ge3>0\)

2/

\(A=10x-6x^2+7=-6x^2+10x+7=-6\left(x^2-\frac{10}{6}x+\frac{25}{36}\right)-\frac{11}{6}=-6\left(x-\frac{5}{6}\right)^2-\frac{11}{6}\le-\frac{11}{6}< 0\)

\(B=-3x^2+7x+10=-3\left(x^2-\frac{7}{3}x+\frac{49}{36}\right)-\frac{311}{12}=-3\left(x-\frac{7}{6}\right)^2-\frac{311}{12}\le-\frac{311}{12}< 0\)

\(C=2x-2x^2-y^2+2xy-5=\left(2x-x^2-1\right)-\left(x^2-2xy+y^2\right)-4=-\left(x^2-2x+1\right)-\left(x-y\right)^2-4=-\left(x-1\right)^2-\left(x-y\right)^2-4\)\(\le-4< 0\)

Lê Thanh Dương
Xem chi tiết
Nguyễn Kiên
14 tháng 6 2017 lúc 15:00

a : x2 + 4x + 7 = (x + 2)2 + 3 > 0

b : 4x2 - 4x + 5 = (2x - 1)2 + 4 > 0

c : x2 + 2y2 + 2xy - 2y + 3 = (x + y)2 + (y - 1)2 + 2 > 0

d : 2x2 - 4x + 10 = 2(x - 1)2 + 8 > 0

e : x2 + x + 1 = (x + 0,5)2 + 0,75 > 0

f : 2x2 - 6x + 5 = 2(x - 1,5)2 + 0,5 > 0

Mike
25 tháng 6 2019 lúc 12:50

a : x2 + 4x + 7 = (x + 2)2 + 3 > 0

b : 4x2 - 4x + 5 = (2x - 1)2 + 4 > 0

c : x2 + 2y2 + 2xy - 2y + 3 = (x + y)2 + (y - 1)2 + 2 > 0

d : 2x2 - 4x + 10 = 2(x - 1)2 + 8 > 0

e : x2 + x + 1 = (x + 0,5)2 + 0,75 > 0

f : 2x2 - 6x + 5 = 2(x - 1,5)2 + 0,5 > 0

OoO Kún Chảnh OoO
Xem chi tiết
Nguyên
1 tháng 8 2016 lúc 9:59

ra vừa thôi mà mấy bài đó sử dùng hằng đẳng thức là ra mà cần gì phải hỏi

Nguyễn Phùng Nguyên Hươn...
1 tháng 8 2016 lúc 10:34

a. x2-x+1= x2-2.x.1/2+12=(x-1)2\(\ge\)0

b. \(x^2+x+2=x^2+2.x.\frac{1}{2}+\left(\frac{1}{2}\right)^2+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)

c. \(-x^2+x-3=-\left(x^2-x+3\right)=-\left(x^2-2.x.\frac{1}{2}+\left(\frac{1}{2}\right)^2+\frac{11}{4}\right)=-\left[\left(x-\frac{1}{2}\right)^2+\frac{11}{4}\right]=-\left(x-\frac{1}{2}\right)^2-\frac{11}{4}\ge-\frac{11}{4}\)

Phạm Ngọc Khang
Xem chi tiết
Nguyễn Nhã Linh
Xem chi tiết
Phan Nghĩa
5 tháng 8 2020 lúc 20:26

\(A=x^2+2x+2=x^2+2x+1+1\)

\(=\left(x+1\right)^2+1>0\)

\(B=x^2+x+1=x^2+x+\frac{1}{4}+\frac{3}{4}\)

\(=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\)

tự làm tiếp đi chị

Khách vãng lai đã xóa
Phạm Ngọc Khang
Xem chi tiết
Trịnh Thành Công
19 tháng 8 2017 lúc 17:05

a)\(-\frac{1}{4}x^2+x-2=-\left[\left(\frac{1}{2}x\right)^2-2.\frac{1}{2}x+1+1\right]\)

                                  \(=-1-\left(\frac{1}{2}x-1\right)^2\le-1\left(đpcm\right)\)

b)\(-3x^2-6x-9=-3\left(x^2-2x+1+2\right)\)

                                  \(=-6-3\left(x-1\right)^2\le-6\left(đpcm\right)\)

Trịnh Thành Công
19 tháng 8 2017 lúc 17:07

c)\(-2x^2+3x-6=-2\left(x^2-\frac{3}{2}x+3\right)\)

                                  \(=-2\left(x^2-2.\frac{3}{4}x+\frac{9}{16}+\frac{39}{16}\right)\)

                                     \(=-\frac{39}{8}-2\left(x-\frac{3}{4}\right)^2\le-\frac{39}{8}\)

d) tương tự

Trà My
19 tháng 8 2017 lúc 17:32

a)\(-\frac{1}{4}x^2+x-2=-\left(\frac{1}{4}x^2-x+2\right)=-\left[\left(\frac{1}{2}x\right)^2-2.\frac{1}{2}x+1+1\right]\)

\(=-\left[\left(x-\frac{1}{2}\right)^2+1\right]=-\left(x-\frac{1}{2}\right)^2-1\)

Vì \(\left(x-\frac{1}{2}\right)^2\ge0\Leftrightarrow-\left(x-\frac{1}{2}\right)^2\le0\Leftrightarrow-\left(x-\frac{1}{2}\right)^2-1\le-1< 0\)

=> biểu thức luôn âm

các câu sau tương tự, nếu bạn chưa rõ thì có thể hỏi lại mình

Đoàn Thị Hà Trang
Xem chi tiết
Nguyễn Khoa Tuấn
24 tháng 6 2017 lúc 18:43

làm x mũ 2 như nào vậy

em học dốt
24 tháng 6 2017 lúc 19:10

x- x +1 

x2  - 2.x .\(\frac{1}{2}\) + \(\left(\frac{1}{2}\right)^2\)  _  \(\frac{3}{4}\)   = (x- \(\frac{1}{2}\)  \(\ge\)0 => (x -  1/2)^ 2 - 3/4 \(\ge0\) =>  luôn dương  với mọi x

b,x2+x+2

x2  +  2.x .1/2 +(1/2)^2 - 7/4 =(x+1/2)^2  \(\ge\)0 => (x +  1/2)^ 2 - 7/4 \(\ge0\) =>  luôn dương  với mọi x

c,-a2+a-3

-(a2-a+3)=.-(a- 2a  .\(\frac{1}{2}\) + \(\left(\frac{1}{2}\right)^2\)  _  \(\frac{3}{4}\)   =  -(a \(\frac{1}{2}\)  \(\ge\)0 => ( a-  1/2)^ 2 - 3/4 \(\ge0\) =>  luôn dương  với mọi a

d, 3x2-x+1:4x+2x-13

tương tựevhuô,i9o

em học dốt
24 tháng 6 2017 lúc 19:11

b vèo hướng dan online math có nhé  :))))

ßσss™|๖ۣۜHắc-chan|
Xem chi tiết
Kiệt Nguyễn
2 tháng 8 2019 lúc 17:19

a) \(x^2+x+1=x^2+x+\frac{1}{4}+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\forall x\)

Kiệt Nguyễn
2 tháng 8 2019 lúc 17:22

c) \(C=4x-10-x^2=-\left(x^2-4x+10\right)\)

\(=-\left(x^2-4x+4+6\right)=-\left[\left(x-2\right)^2+6\right]\)

\(=-\left(x^2-4x+4+6\right)=-\left[\left(x-2\right)^2\right]-6\le-6< 0\forall x\)