tìm x,y,z biết : \(\frac{x-1}{2}=\frac{x+3}{4}=\frac{z-5}{6}\) và 5x - 3y -4z
Tìm x , y , z :
a) \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\) và 2x + 3y - z = 50
b) \(\frac{x-1}{2}=\frac{y+3}{4}=\frac{x-5}{6}\)và 5x - 3y - 4z = 46
c) \(\frac{2x}{5}=\frac{3y}{10}=\frac{z}{12}\)và x + y + z = 107
d) \(\frac{5z-6y}{4}=\frac{6x-4z}{5}=\frac{4y-5z}{6}\)và 3x - 2y + 5z = 96
a
Đặt \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}=k\)
\(\Rightarrow x=2k+1;y=3k+2;z=4k+3\)
Thay vào,ta được:
\(2\left(2k+1\right)+3\left(3k+2\right)-\left(4k+3\right)=50\)
\(\Leftrightarrow4k+2+9k+6-4k-3=50\)
\(\Leftrightarrow9k+5=50\)
\(\Leftrightarrow9k=45\)
\(\Leftrightarrow k=5\)
\(\frac{x-1}{2}=\frac{y+3}{4}=\frac{z-5}{6}=\frac{5x-5}{10}=\frac{3y+9}{12}=\frac{4z-20}{24}\)
\(=\frac{5x-5-3y-9-4z+20}{10-12-24}=\frac{\left(5x-3y-4z\right)+\left(20-5-9\right)}{26}=\frac{46+6}{26}=2\)
\(\Rightarrow x=2\cdot2+1=5\)
\(y=4\cdot2-3=5\)
\(z=2\cdot6+5=17\)
Câu c tương tự như câu 1
\(c,\frac{2x}{5}=\frac{3y}{10}=\frac{z}{12}\)và x + y + z = 107
Ta có : \(\frac{2x}{5}=\frac{3y}{10}=\frac{z}{12}\Leftrightarrow\frac{x}{\frac{5}{2}}=\frac{y}{\frac{10}{3}}=\frac{z}{12}=\frac{x+y+z}{\frac{5}{2}+\frac{10}{3}+12}=\frac{107}{\frac{107}{6}}=107\cdot\frac{6}{107}=6\)
Vậy : \(\hept{\begin{cases}\frac{2x}{5}=6\\\frac{3y}{10}=6\\\frac{z}{12}=6\end{cases}}\Leftrightarrow\hept{\begin{cases}x=15\\x=20\\z=72\end{cases}}\)
Tìm x , y , z biết:
a) x/10 = y/6 = z/21 và 5x + y - 2z = 28
b) 3x = 2y ; 7y = 5z và x - y + z = 32
c) x/3 = y/4 ; y/3 = z/5 và 2x - 3y + z = 6
d) 2x/3 = 3y/4 = 4z/5 và x + y + z = 49
e) \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}và2x+3y-z=50\)
a)ta có: x/10 = y/6 = z/21=>5x/50=y/6=2z/42
áp dụng tính chất của dãy tỉ số = nhau ta có:
5x/50=y/6=2z/42=5x+y-2z/50+6-42=28/14=2
suy ra: 5x/50=2=>5x=100=>x=20
y/6=2=>y=12
2z/42=2=>84=>z=42
b)3x = 2y ; 7y = 5z
=>x/2=y/3;y/5=z/7
=>x/10=y/15;y/15=z/21
=>x/10=y/15=z/21
áp dụng tính chất của dãy tỉ số = nhau ta có:
x/10=y/15=z/21=x-y+z/10-15+21=32/16=2
suy ra :
x/10=2=>x=20
y/15=2=>y=30
z/21=2=>z=42
c) x/3 = y/4 ; y/3 = z/5
=>x/9=y/12;y/12=z/20
=>x/9=y/12=z/20
=>2x/18=3y/36=z/20
áp dụng tính chất của dãy tỉ số = nhau ta có:
2x/18=3y/36=z/20=2x-3y+z/18-36+20=6/2=3
suy ra
2x/18=3=>2x=54=>x=27
3y/36=3=>3y=108=>y=36
z/20=3=>z=60
d)2x/3 = 3y/4 = 4z/5
=>12x/18=12y/16=12z/15
áp dụng tính chất của dãy tỉ số = nhau ta có:
12x/18=12y/16=12z/15=12x+12y+12z/18+16+15=12(x+y+z)/49=49/49=12
suy ra
12x/18=12=>12x=216=>x=18
12y/16=12=>12y=192=>y=16
12z/15=12=>12z=180=>z=15
d)đặt x-1/2=y-2/3=z-3/4=k
=>x=2k+1
y=3k+2
z=4k+3
thay x=2k+1;y=3k+2;z=4k+3 vào 2x+3x-z=50 ta được:
2(2k+1)+3(3k+2)-(4k+3)=50
4k+2+9k+6-4k-3=50
9k+5=50
9k=45
k=5
=>x=2k+1=2.5+1=11
y=3k+2=3.5+2=17
z=4k+3=4.5+3=23
đặt x-1/2=y-2/3=z-3/4=k
=> x=2K+1, y=3k+2, z=4k+3
=>2x+3y-z=4K+2+9k+6-4k-3=9K+5=50
=>K=5
=>x=11, y=17, z=23
chúc học tốt nhé!
bạn làm đúng rồi mình cũng giống bạn trieu dang
Tìm x , y , z biết:
a) x/10 = y/6 = z/21 và 5x = y - 2z = 28
b) 3x = 2y ; 7y = 5z và x - y + z = 32
c) x/3 = y/4 ; y/3 = z/5 và 2x - 3y + z = 6
d) 2x/3 = 3y/4 = 4z/5 và x + y + z = 49
e) \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}và2x+3y-z=50\)
b) 3x = 2y
=> x/2 = y/3 (1)
7y = 5z
=> y/5 = z/7 (2)
Từ (1) và (2), có:
\(\frac{x}{2}=\frac{y}{3};\frac{y}{5}=\frac{z}{7}\Rightarrow\)\(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\)
áp dụng tính chất của dãy tỉ số bằng nhau, có:
\(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}=\frac{x-y+z}{10-15+21}=\frac{32}{16}=2\)
x/10 = 2 => x = 2 x 10 =20
y/15 = 2 => y = 2 x 15 = 30
z/21 = 2 => z = 2 x 21 = 42
Tìm x,y,z biết :
a) \(\frac{x}{10}=\frac{y}{6}=\frac{z}{24}\) và 5x+y-2z= 28
b) \(\frac{x}{3}=\frac{y}{4};\frac{y}{5}=\frac{z}{7}\)và 2x+3y-z= 186
c) 3x=2y; 7y=5z và x-y+z= 32
d) \(\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}\) và x+y+z=49
e)\(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\) và 2x +3y-z= 49
a) Ta có: x/10=y/6=z/24 và 5x+y—2x=28
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
x/10=y/6=z/24=5x/50+y/6–2x/48= 5x+y—2x/50+6–48=28/ 8
Ta được: x= 10.28/8=35
y= 6.28/8=21
z=24.28/8=84
Áp dụng tính chất dãy tỉ số bằng nhau
\(\frac{x}{5}=\frac{y}{7}=\frac{z}{9}=\frac{x-y+z}{5-7+9}=\frac{315}{7}=45\)
suy ra: x/5 = 45 => x = 225
y/7 = 45 => y = 315
z/9 = 45 => z = 405
a, x/10 =y/6=z/24= 5x/50=y/6=2z/48
áp dụng tính chất dãy tỉ số bằng nhau
5x/50=y/6=2z/48= 5x+y-2z/50+6-48=28/2=14
==>x=140
y=84
z=336
b,x/6=y/4;y/5=z/7
==>x/15=y/20 (1)
y/20=z/28 (2)
từ 1 và 2 => x/15=y/20=z/28
x/15=y/20=z/28=2x/30=3y/60=z/28
áp dụng tính chất dãy tỉ số bàng nhau
2x/30=3y/60=z/38=2x+3y-z/30+60-28=186/62=3
=>x=45
=>y=60
=>z=84
Tìm x , y , z biết
a ) \(\frac{2x-1}{5}=\frac{3y+2}{4}=\frac{4z-3}{5}\) và 2x - 3y + 4z = 9
b ) \(\frac{x-1}{5}=\frac{y-2}{6}=\frac{z-3}{7}\) và xyz = 1
a) Đặt 2x - 1 / 5 = 3y + 2 / 4 = 4z - 3 / 5 = k
=> 2x = 5k + 1; 3y = 4k - 2; 4z = 5k + 3
=> 2x - 3y + 4z = 5k + 1 - 4k - 2 + 5k + 3 = 6k + 2 = 9
=> 6k = 9 - 2 = 7
=> k = 7 : 6 = 7/6
2x =5k
Tìm x,y,z biết
\(a.\frac{x}{3}=\frac{y}{4};\frac{y}{3}=\frac{z}{5}\) và 2x-3y+z=6
\(b.\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}\)và x+y+z=49
\(c.\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-4}{4}\)và 2x+3y-z=50
\(d.\frac{x}{2}=\frac{y}{3}=\frac{z}{5}\)và xyz=810
a, \(\frac{x}{3}=\frac{y}{4};\frac{y}{3}=\frac{z}{5}\Rightarrow\frac{x}{9}=\frac{y}{12}=\frac{z}{20}\)
Theo tính chất dãy tỉ số bằng nhau
\(\frac{x}{9}=\frac{y}{12}=\frac{z}{20}=\frac{2x-3y+z}{18-36+20}=\frac{6}{2}=3\Rightarrow x=27;y=36;z=60\)
b, \(\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}\Rightarrow\frac{x}{\frac{3}{2}}=\frac{y}{\frac{4}{3}}=\frac{z}{\frac{5}{4}}\)
Theo tính chất dãy tỉ số bằng nhau
\(\frac{x}{\frac{3}{2}}=\frac{y}{\frac{4}{3}}=\frac{z}{\frac{5}{4}}=\frac{x+y+z}{\frac{3}{2}+\frac{4}{3}+\frac{5}{4}}=\frac{49}{\frac{49}{12}}=12\)
\(\Rightarrow x=18;y=24;z=30\)
c, \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-4}{4}\Rightarrow\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-4}{4}\)
Theo tính chất dãy tỉ số bằng nhau
\(\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-4}{4}=\frac{2x+3y-z-2-6+4}{4+9-4}=\frac{46}{9}\)
\(\Rightarrow x=\frac{101}{9};y=\frac{52}{3};z=\frac{220}{9}\)
d, Đặt \(x=2k;y=3k;z=5k\Rightarrow xyz=810\Rightarrow30k^3=810\)
\(\Leftrightarrow k^3=27\Leftrightarrow k=3\)Với k = 3 thì \(x=6;y=9;z=15\)
Giúp mik với
Tìm các sô x,y,z biết
a)\(\frac{4x}{5}=\frac{3y}{2};\frac{4y}{5}=\frac{5x}{3}\)và 2x-3y+4z=5,34
b)\(\frac{x-1}{2}=\frac{y-2}{3}=\frac{x-3}{4}\)và 2x+3y-z=50
\(\hept{\begin{cases}\frac{4x}{5}=\frac{3y}{2}\\\frac{4y}{5}=\frac{5z}{3}\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{x}{\frac{5}{4}}=\frac{y}{\frac{2}{3}}\\\frac{y}{\frac{5}{4}}=\frac{z}{\frac{3}{5}}\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{x}{\frac{5}{4}}\times\frac{1}{\frac{3}{2}}=\frac{y}{\frac{2}{3}}\times\frac{1}{\frac{3}{2}}\\\frac{y}{\frac{5}{4}}\times\frac{1}{\frac{4}{5}}=\frac{z}{\frac{3}{5}}\times\frac{1}{\frac{4}{5}}\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{x}{\frac{15}{8}}=\frac{y}{1}\\\frac{y}{1}=\frac{z}{\frac{12}{25}}\end{cases}}\Rightarrow\frac{x}{\frac{15}{8}}=\frac{y}{1}=\frac{z}{\frac{12}{25}}\)
2x - 3y + 4z = 5, 34
=> \(\frac{2x}{\frac{15}{4}}=\frac{3y}{3}=\frac{4z}{\frac{48}{25}}\)và 2x - 3y + 4z = 5, 34
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{2x}{\frac{15}{4}}=\frac{3y}{3}=\frac{4z}{\frac{48}{25}}=\frac{2x-3y+4z}{\frac{15}{4}-3+\frac{48}{25}}=\frac{5,34}{\frac{267}{100}}=2\)
\(\Rightarrow\hept{\begin{cases}x=2\cdot\frac{15}{8}=\frac{15}{4}\\y=2\cdot1=2\\z=2\cdot\frac{12}{25}=\frac{24}{25}\end{cases}}\)
Vậy ...
b) \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\)và 2x + 3y - z = 50
=> \(\frac{2\left(x-1\right)}{4}=\frac{3\left(y-2\right)}{9}=\frac{z-3}{4}\)
=> \(\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-3}{4}\)và 2x + 3y - z = 50
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(...=\frac{2x-2+3y-6-\left(z-3\right)}{4+9-4}=\frac{2x-2+3y-6-z+3}{9}=\frac{50-2-6+3}{9}=\frac{45}{9}=5\)
\(\frac{x-1}{2}=5\Rightarrow x-1=10\Rightarrow x=11\)
\(\frac{y-2}{3}=5\Rightarrow y-2=15\Rightarrow y=17\)
\(\frac{z-3}{4}=5\Rightarrow z-3=20\Rightarrow z=23\)
Vậy ...
Bài 1: Tìm x,y,z biết rằng.
a)\(\frac{x}{10}=\frac{y}{6}=\frac{z}{21}\)và 5x+y-2z=28
b)\(\frac{x}{3}=\frac{y}{4},\frac{y}{5}=\frac{z}{7}va\)2x+3y-z=124
c)\(\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}\)và x+y+z
Tìm x;y;z
a} \(\frac{x}{4}=\frac{y}{3}=\frac{z}{9}\) và x - 3y + 4z = 62
b} 5x = 8y = 20z và x - y - z = 3
c} \(\frac{6}{11}x=\frac{9}{2}y=\frac{18}{5}z\) và -x + y + z = -120
\(\frac{x}{4}=\frac{y}{3}=\frac{z}{9}=\)\(\frac{x}{4}=\frac{3y}{9}=\frac{4z}{36}\)
Áp dụng tính chất của dãy tủ số bằng nhau ta có:
\(\frac{x}{4}=\frac{3y}{9}=\frac{4z}{36}=\frac{x-3y+4z}{4-9+36}=\frac{62}{31}=2\)
\(\frac{x}{4}=2=>x=8\)
\(\frac{3y}{9}=2=>y=6\)
\(\frac{4z}{36}=2=>z=18\)
Ta có: a) \(\hept{\begin{cases}\frac{x}{4}=\frac{y}{3}=\frac{z}{9}\\x-3y+4x=62\end{cases}\Rightarrow\frac{x-3y+4z}{4-9+36}=\frac{62}{31}=2}\)
\(\Rightarrow\hept{\begin{cases}x=2.4=8\\y=2.3=6\\z=2.9=18\end{cases}}\)
a) Ta có: x/4=y/3=z/9=x-3y+4z/4-9+36=62/31=2
x/4=2 => x=2.4=8
y/3=2 => y=2.3=6
z/9=2 => z=2.9=18
Vậy x=8; y=6; z=18.