Cho A= 1001/10002 + 1 + 1001/10002 + 2 + ... + 1001/10002 + 1000
Chứng minh rằng 1<A2 <4
Cho A = \(\dfrac{1001}{1000^2+1}\)+\(\dfrac{1001}{1000^2+2}\)+\(\dfrac{1001}{1000^2+3}\)+...+\(\dfrac{1001}{1000^2+1000}\)
Chứng minh rằng 1<\(^{A^2}\)<4
Tổng A có 1000 số hạng.
Vậy
Chúc bạn học tốt.
Tổng A có 1000 số hạng
A>(1001/1000^2+1000)*1000=1001*1000/1000*(1000+1)=1
A<(1001/1000^2)*1000=1001/1000=1+1/1000<1
Vậy 1<A<2 nên 1<A^2<4
Cho A= 1001/1000^2+1 + 1001/1000^2+2 + .... + 1001/1000^2+1000.
Chứng minh rằng: 1 < A^2 < 4
10002+10003+10004=?
Số cần tìm là:
10002+10003+10004=30009
Đáp số: 30009
\(A=\dfrac{1001}{1000^2+1}+\dfrac{1001}{1000^2+2}+\dfrac{1001}{1000^3+3}+.....+\dfrac{1001}{1000^2+100}\)Chứng minh rằng 1<A2<4
102+10002+999+8432+98754
102+10002+999+8432+98754=10104 + 999 + 8432 + 98754=11103+ 8432 + 98754=19535 + 98754=118 289
( 123456/ 785412 + 10002 ) * 0 = ???
đáp số bằng 0 vì số nào nhân với 0 cũng bằng 0
OK
( 123456/ 785412 + 10002 ) x 0 = 0
Vì số nào nhân với 0 cũng bằng 0
Chứng minh rằng 1 < A < 2 :
\(A=\frac{1001}{1000^2+1}+\frac{1001}{1000^2+2}+...+\frac{1001}{1000^2+1000}\)
Chứng minh rằng 1 < A2<4 biết :
\(A=\dfrac{1001}{1000^2+1}+\dfrac{1001}{1000^2+2}+...+\dfrac{1001}{1000^2+1000}\)
Cho A=1001/1000*1000+1 + 1001/1000*1000+2 + ...... + 1001/1000*1000+1000
Chứng minh: 1<A*A<4