Chi x y z khác 0 thỏa mãn
1/x+1/y+1/z=2 và 1/xy+1/z^2=4
Tính giá trị biểu thức A=(x+2y-z)_2017
cho x+1/x=a. Tính x^7+1/x^7 theo a
Cho x, y, z khác 0 thỏa mãn đồng thời 1/x +1/y + 1/z =2 và 2/xy - 1/z^2 = 4 Tính giá trị của biểu thức p=(x+2y+z)^2018
Bài 1 :
Ta có :
\(x^7+\frac{1}{x^7}=\left(x^3+\frac{1}{x^3}\right)\left(x^4+\frac{1}{x^4}\right)-\left(x+\frac{1}{x}\right)\)
\(\left(x+\frac{1}{x}\right)=a\Leftrightarrow\left(x+\frac{1}{x}\right)^2=a^2\)
\(\Leftrightarrow x^2+\frac{1}{x^2}+2.x.\frac{1}{x}=a^2\)
\(\Leftrightarrow x^2+\frac{1}{x^2}=a^2-2\)
\(x^3+\frac{1}{x^3}=\left(x+\frac{1}{x}\right)\left(x^2-x.\frac{1}{x}+\frac{1}{x^2}\right)\)
\(=a\left(x^2+\frac{1}{x^2}-1\right)=a\left(a^2-3\right)\)
\(x^4+\frac{1}{x^4}=\left(x^2+\frac{1}{x^2}\right)^2-2.x^2.\frac{1}{x^2}\)
\(=\left(a^2-2\right)^2-2=a^4-4a^2+4-2\)
\(=a^4-4a^2+2\)
\(\Rightarrow x^7+\frac{1}{x^7}=a.\left(a^2-3\right).\left(a^4-4a^2+2\right)-a\)
\(=\left(a^3-3a\right)\left(a^4-4a^2+2\right)-a\)
\(=a^7-4a^5+2a^3-3a^5+12a^3-6a-a\)
\(=a^7-7a^5+14a^3-7a\)
Bài 2 :
Ta có :
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=2\)
\(\Rightarrow\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2=2^2\)
\(\Rightarrow\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}+\frac{2}{xy}+\frac{2}{yz}+\frac{2}{zx}=4\)
\(\Rightarrow\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}+\frac{2}{xy}+\frac{2}{yz}+\frac{2}{zx}=\frac{2}{xy}-\frac{1}{z^2}\)
\(\Rightarrow\frac{1}{x^2}+\frac{1}{y^2}+\frac{2}{z^2}+\frac{2}{yz}+\frac{2}{zx}=0\)
\(\Rightarrow\left(\frac{1}{x^2}+\frac{2}{xz}+\frac{1}{z^2}\right)+\left(\frac{1}{y^2}+\frac{2}{yz}+\frac{1}{z^2}\right)=0\)
\(\Rightarrow\left(\frac{1}{x}+\frac{1}{z}\right)^2+\left(\frac{1}{y}+\frac{1}{z}\right)^2=0\)
\(\Rightarrow\frac{1}{x}+\frac{1}{z}=\frac{1}{y}+\frac{1}{z}=0\) vì \(\left(\frac{1}{x}+\frac{1}{z}\right)^2,\left(\frac{1}{y}+\frac{1}{z}\right)^2\ge0\)
\(\Rightarrow x=y=-z\)
\(\Rightarrow\frac{1}{-z}+\frac{1}{-z}+\frac{1}{z}=2\Rightarrow-\frac{1}{z}=2\Rightarrow z=-\frac{1}{2}\)
\(\Rightarrow x=y=\frac{1}{2}\)
\(\Rightarrow x+2y+z=\frac{1}{2}+2.\frac{1}{2}-\frac{1}{2}=1\)
\(\Rightarrow P=1\)
Cho x,y,z là các số khác 0 và đôi một khác nhau thỏa mãn 1/x +1/y + 1/z =0
Tính giá trị biểu thức A=yz/(x^2 +2yz) + xz/(y^2+ 2xz) + xy/(z^2+ 2xy)
1)cho 2 số x,y thỏa mãn xy+x+y=7 và x^2y +xy^2= 10
tính giá trị biểu thức A= x^3 +y^3
2)tìm bộ 3 x,y,z thỏa mãn:
x-y-z+3=0 và x^2-y^2-z^2 =1
các bạn làm giúp m nha!!!
Cho xyz khác 0 thỏa mãn: x^3y^3 + y^3z^3 + z^3x^3 = 3x^2y^2z^2
Tính giá trị của biểu thức: M = ( 1+ x/y )( 1 + y/z )( 1 + z/x )
3x²y²z² = x³y³ y³z³ z³x³
(3x²y²z²) / (x³y³ y³z³ z³x³) = 1
3.[(x²y²z²) / (x³y³ y³z³ z³x³)] = 1
(x²y²z²) / (x³y³ y³z³ z³x³) = 1/3
(x²y²z²) / (x³y³) (x²y²z²) / (y³z³) (x²y²z²) / (z³x³) = 1/3
z²/(xy) x/(yz) y²/(zx) = 1/3
Vậy x²/(yz) y²/(xz) z²/(xy) = 1/3
cho 3 số x, y, z khác không thỏa mãn:1/x+1/y+1/z=0.tính giá trị biểu thức P=yz/x^2+xz/y^2+xy/z^2
bạn nào trả lời dc mình tik cho
Cho x,y,z khác 0 thỏa điều kiện (1/x)+(1/y)+(1/z)=2 và (2/xy)+(1/z^2)=1. Tính giá trị p=(x+2y+z)
Cho các số x, y, z khác 0 thỏa mãn:\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=2\)và \(\frac{2}{xy}-\frac{1}{z^2}=4\)
Tính giá teij của biểu thức \(P=\left(x+2y+z\right)^{2018}\)
cho x, y,z đều khác 0 thỏa mãn x+y+z=xyz và1/x+1/y+1/z=căn 3
Tính giá trị biểu thức: M=1/x^2+1/y^2+1/z^2
1. a. Tìm x,y,z biết x2+4y2= 2xy +1 và z2=2xy -1
b. cho x+y+z=1 và\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\)Tính Giá trị biểu thức B= x2+y2+z2
2. Cho x,y khác 0 thỏa mãn x+y=xy. Tìm giá trị nhỏ nhất của biểu thức sau:
A=\(\frac{1}{x^2}+\frac{1}{y^2}\)
Bài \(1a.\) Tìm \(x,y,z\) biết \(x^2+4y^2=2xy+1\) \(\left(1\right)\) và \(z^2=2xy-1\) \(\left(2\right)\)
Cộng \(\left(1\right)\) và \(\left(2\right)\) vế theo vế, ta được:
\(x^2+4y^2+z^2=4xy\)
\(\Leftrightarrow\) \(x^2-4xy+4y^2+z^2=0\)
\(\Leftrightarrow\) \(\left(x-2y\right)^2+z^2=0\)
Do \(\left(x-2y\right)^2\ge0\) và \(z^2\ge0\) với mọi \(x,y,z\)
nên để thỏa mãn đẳng thức trên thì phải đồng thời xảy ra \(\left(x-2y\right)^2=0\) và \(z^2=0\)
\(\Leftrightarrow\) \(^{x-2y=0}_{z^2=0}\) \(\Leftrightarrow\) \(^{x=2y}_{z=0}\)
Từ \(\left(2\right)\), với chú ý rằng \(x=2y\) và \(z=0\), ta suy ra:
\(2xy-1=0\) \(\Leftrightarrow\) \(2.\left(2y\right).y-1=0\) \(\Leftrightarrow\) \(4y^2-1=0\) \(\Leftrightarrow\) \(y^2=\frac{1}{4}\) \(\Leftrightarrow\) \(y=\frac{1}{2}\) hoặc \(y=-\frac{1}{2}\)
\(\text{*)}\) Với \(y=\frac{1}{2}\) kết hợp với \(z=0\) \(\left(cmt\right)\) thì \(\left(2\right)\) \(\Rightarrow\) \(2.x.\frac{1}{2}-1=0\) \(\Leftrightarrow\) \(x=1\)
\(\text{*)}\) Tương tự với trường hợp \(y=-\frac{1}{2}\), ta cũng dễ dàng suy ra được \(x=-1\)
Vậy, các cặp số \(x,y,z\) cần tìm là \(\left(x;y;z\right)=\left\{\left(1;\frac{1}{2};0\right),\left(-1;-\frac{1}{2};0\right)\right\}\)
\(b.\) Vì \(x+y+z=1\) nên \(\left(x+y+z\right)^2=1\)
\(\Leftrightarrow\) \(x^2+y^2+z^2+2\left(xy+yz+xz\right)=1\) \(\left(3\right)\)
Mặt khác, ta lại có \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\) \(\Rightarrow\) \(xy+yz+xz=0\) \(\left(4\right)\) (do \(xyz\ne0\))
Do đó, từ \(\left(3\right)\) và \(\left(4\right)\) \(\Rightarrow\) \(x^2+y^2+z^2=1\)
Vậy, \(B=1\)
Ta có:
\(A=\frac{1}{x^2}+\frac{1}{y^2}=\frac{x^2+y^2}{\left(xy\right)^2}=\frac{x^2+y^2}{\left(x+y\right)^2}\) (do \(x+y=xy\)) \(\left(5\right)\)
Dễ dàng chứng minh được với mọi \(x,y\in R\), ta luôn có:
\(\left(x+y\right)^2\le2\left(x^2+y^2\right)\) \(\left(\text{*}\right)\)
Thật vậy, áp dụng bất đẳng thức Bunyakovsky cho hai bộ số \(\left(1^2+1^2\right)\) và \(\left(x^2+y^2\right)\), ta được:
\(\left(1^2+1^2\right)\left(x^2+y^2\right)\ge\left(1.x+1.y\right)^2=\left(x+y\right)^2\)
Do đó, \(2\left(x^2+y^2\right)\ge\left(x+y\right)^2\), hay \(\left(x+y\right)^2\le2\left(x^2+y^2\right)\) \(\left(đpcm\right)\)
Vậy, bất đẳng thức \(\left(\text{*}\right)\) hiển nhiên đúng với mọi \(x,y\in R\), tức bđt \(\left(\text{*}\right)\) được chứng minh.
Dấu \("="\) xảy ra \(\Leftrightarrow\) \(\frac{1}{x}=\frac{1}{y}\) \(\Leftrightarrow\) \(x=y\)
Khi đó, từ \(\left(\text{*}\right)\) \(\Rightarrow\) \(\frac{1}{\left(x+y\right)^2}\ge\frac{1}{2\left(x^2+y^2\right)}\) (do hai vế của bđt \(\left(\text{*}\right)\) cùng dấu \(\left(+\right)\))
nên \(\frac{x^2+y^2}{\left(x+y\right)^2}\ge\frac{x^2+y^2}{2\left(x^2+y^2\right)}=\frac{1}{2}\) (vì \(x^2+y^2>0\) với mọi \(x,y\in R\) và \(x,y\ne0\)) \(\left(6\right)\)
\(\left(5\right);\) \(\left(6\right)\) \(\Rightarrow\) \(A\ge\frac{1}{2}\)
Dấu \("="\) xảy ra \(\Leftrightarrow\) \(^{x+y=xy}_{x=y}\) \(\Leftrightarrow\) \(x=y=2\)
Vậy, GTNN của \(A=\frac{1}{2}\)