so sánh phan số \(\frac{63}{64}\)với phân số \(\frac{2017}{2018}\)
So sánh hai phân số : A=\(\frac{2015}{2016}+\frac{2016}{2017}+\frac{2017}{2018}\)và B=\(\frac{2015+2016+2017}{2016+2017+2018}\)
\(A=\frac{2015}{2016}+\frac{2016}{2017}+\frac{2017}{2018}\)
\(B=\frac{2015+2016+2017}{2016+2017+2018}\)
\(B=\frac{2015}{2016+2017+2018}+\frac{2016}{2016+2017+2018}+\frac{2017}{2016+2017+2018}\)
Ta có:
\(\frac{2015}{2016}>\frac{2015}{2016+2017+2018}\)
\(\frac{2016}{2017}>\frac{2016}{2016+2017+2018}\)
\(\frac{2017}{2018}>\frac{2017}{2016+2017+2018}\)
Cộng vế theo vế, ta có:
\(\frac{2015}{2016}+\frac{2016}{2017}+\frac{2017}{2018}>\frac{2015}{2016+2017+2018}+\frac{2016}{2016+2017+2018}+\frac{2017}{2016+2017+2018}\)
\(hay\frac{2015}{2016}+\frac{2016}{2017}+\frac{2017}{2018}>\frac{2015+2016+2017}{2016+2017+2018}\)
\(\Rightarrow A>B\)
Vậy A > B
Cho các phân số \(\frac{1}{2};\frac{1}{4};\frac{1}{8};\frac{1}{16};\frac{1}{32};\frac{1}{64}\)
a, Tính nhanh tổng các phân số đã cho
b, So sánh tổng đó với phân số \(\frac{2017}{2018}\)
GIẢI CHI TIẾT NHA . MÌNH ĐANG GẤP LẮM . AI NHANH MÌNH TICK
So sánh 2 phân số
A=\(\frac{2015}{2016}+\frac{2016}{2017}+\frac{2017}{2018}\)
B=\(\frac{2015+2016+2017}{2016+2017+2018}\)
Ta có : \(B=\frac{2015+2016+2017}{2016+2017+2018}\) \(=\frac{2015}{2016+2017+2018}+\frac{2016}{2016+2017+2018}+\frac{2017}{2016+2017+2018}\)
Mà \(\frac{2015}{2016}>\frac{2015}{2016+2017+2018}\)
\(\frac{2016}{2017}>\frac{2016}{2016+2017+2018}\)
\(\frac{2017}{2018}>\frac{2017}{2016+2017+2016}\)
Cộng vế theo vế, ta có :
\(\frac{2015}{2016}+\frac{2016}{2017}+\frac{2017}{2018}>\frac{2015+2016+2017}{2016+2017+2018}\)
\(\Rightarrow A>B\)
So sánh phân số sau:
\(\frac{2017\cdot2018}{2017\cdot2018+1}\)và\(\frac{2018\cdot2019}{2018\cdot2019+1}\)
Ta đi so sánh \(\frac{2017.2018+1}{2017.2018}\)với\(\frac{2018.2019+1}{2018.2019}\)có :
\(\frac{2017.2018+1}{2017.2018}=\frac{2017.2018}{2017.2018}+\frac{1}{2017.2018}=1+\frac{1}{2017.2018}\left(\cdot\right)\)
\(\frac{2018.2019+1}{2018.2019}=\frac{2018.2019}{2018.2019}+\frac{1}{2018.2019}\left(\cdot\cdot\right)\)
\(\frac{1}{2017.2018}>\frac{1}{2018.2019}\left(\cdot\cdot\cdot\right)\)Từ \(\left(\cdot\right);\left(\cdot\cdot\right)\&\left(\cdot\cdot\cdot\right)\Rightarrow\frac{2017.2018+1}{2017.2018}>\frac{2018.2019+1}{2018.2019}\)
\(\Leftrightarrow\frac{2017.2018}{2017.2018+1}< \frac{2018.2019}{2018.2019+1}.\)
#)Trả lời :
\(\frac{2017\times2018}{2017\times2018+1}=\frac{0}{1}=0\)
\(\frac{2018\times2019}{2018\times2019+1}=\frac{0}{1}=0\)
\(\Rightarrow\frac{2017\times2018}{2017\times2018+1}=\frac{2018\times2019}{2018\times2019+1}\)
So sánh hai phân số A=\(\frac{2015}{2016}+\frac{2016}{2017}+\frac{2017}{2018}\)và B=\(\frac{2015+2016+2017}{2016+2017+2018}\)
Các bn giải giúp mk nha ! Mk cần gấp ! Thanks nhiều. ^-^
B = \(\frac{2015+2016+2017}{2016+2017+2018}=\frac{2016.3}{2017.3}=\frac{2016}{2017}\left(1\right)\)
Mà A = \(\frac{2015}{2016}+\frac{2016}{2017}+\frac{2017}{2018}.\left(2\right)\)
Từ \(\left(1\right)\)và \(\left(2\right)\)=> A > B.
Vậy A > B .
Bạn Dont look at me
Bạn nên làm theo bạn ấy
Bạn k đúng cho bạn ấy. Bởi vì bạn ấy làm đúng
Theo mk là vậy
\(A=\frac{2015}{2016}+\frac{2016}{2017}+\frac{2017}{2018}\)\(B=\frac{2015+2016+2017}{6051}\)
\(A=\frac{2015}{2016}+\frac{2016}{2017}+\frac{2017}{2018}\)\(B=\frac{2015}{6051}+\frac{2016}{6051}+\frac{2017}{6051}\)
=> A > B
So sánh các phân số sau:
\(\frac{-2017}{2018}\)và\(\frac{-2018}{2019}\)
Ta có: \(\frac{-2017}{2018}+1=\frac{1}{2018}\)
\(\frac{-2018}{2019}+1=\frac{1}{2019}\)
Vì \(\frac{1}{2019}< \frac{1}{2018}\)
\(\Leftrightarrow\frac{-2018}{2019}+1< \frac{-2017}{2018}+1\)
\(\Leftrightarrow\frac{-2018}{2019}< \frac{-2017}{2018}\)
HOK TOT
Bài 1 : So sánh M và N biết :
\(M=\frac{2017}{2018}+\frac{2018}{2019}\) và \(N=\frac{2017+2018}{2018+2019}\)
Bài 2 : So sánh A và B biết :
\(A=\frac{2017}{987654321}+\frac{2018}{24681357}\) và \(B=\frac{2018}{987654321}+\frac{2017}{24681357}\)
Bài 3 : So sánh :
\(\frac{2016}{2017}+\frac{2017}{2018}+\frac{2018}{2019}+\frac{2019}{2016}\)với 4.
Bài 4 : So sánh phân số sau với 1 :
\(\frac{1991\times1999}{1995\times1995}\)
Bài 1:
Ta có:
\(N=\frac{2017+2018}{2018+2019}=\frac{2017}{2018+2019}+\frac{2018}{2018+2019}\)
Do \(\hept{\begin{cases}\frac{2017}{2018+2019}< \frac{2017}{2018}\\\frac{2018}{2018+2019}< \frac{2018}{2019}\end{cases}\Rightarrow\frac{2017}{2018+2019}+\frac{2018}{2018+2019}< \frac{2017}{2018}+\frac{2018}{2019}}\)
\(\Leftrightarrow N< M\)
Vậy \(M>N.\)
Bài 2:
Ta có:
\(A=\frac{2017}{987653421}+\frac{2018}{24681357}=\frac{2017}{987654321}+\frac{2017}{24681357}+\frac{1}{24681357}\)
\(B=\frac{2018}{987654321}+\frac{2017}{24681357}=\frac{1}{987654321}+\frac{2017}{987654321}+\frac{2017}{24681357}\)
Do \(\hept{\begin{cases}\frac{2017}{987654321}+\frac{2017}{24681357}=\frac{2017}{987654321}+\frac{2017}{24681357}\\\frac{1}{24681357}>\frac{1}{987654321}\end{cases}}\)
\(\Rightarrow\frac{2017}{987654321}+\frac{2017}{24681357}+\frac{1}{24681357}>\frac{1}{987654321}+\frac{2017}{987654321}+\frac{2017}{24681357}\)
\(\Leftrightarrow A>B\)
Vậy \(A>B.\)
Bài 3:
\(\frac{2016}{2017}+\frac{2017}{2018}+\frac{2018}{2019}+\frac{2019}{2016}=1-\frac{1}{2017}+1-\frac{1}{2018}+1-\frac{1}{2019}+1+\frac{3}{2016}\)
\(=1+1+1+1-\frac{1}{2017}-\frac{1}{2018}-\frac{1}{2019}+\frac{3}{2016}\)
\(=4-\left(\frac{1}{2017}+\frac{1}{2018}+\frac{1}{2019}-\frac{3}{2016}\right)\)
Do \(\hept{\begin{cases}\frac{1}{2017}< \frac{1}{2016}\\\frac{1}{2018}< \frac{1}{2016}\\\frac{1}{2019}< \frac{1}{2016}\end{cases}\Rightarrow\frac{1}{2017}+\frac{1}{2018}+\frac{1}{2019}< \frac{1}{2016}+\frac{1}{2016}+\frac{1}{2016}=\frac{3}{2016}}\)
\(\Rightarrow\frac{1}{2017}+\frac{1}{2018}+\frac{1}{2019}-\frac{3}{2016}\)âm
\(\Rightarrow4-\left(\frac{1}{2017}+\frac{1}{2018}+\frac{1}{2019}-\frac{3}{2016}\right)>4\)
Vậy \(\frac{2016}{2017}+\frac{2017}{2018}+\frac{2018}{2019}+\frac{2019}{2016}>4.\)
Bài 4:
\(\frac{1991.1999}{1995.1995}=\frac{1991.\left(1995+4\right)}{\left(1991+4\right).1995}=\frac{1991.1995+1991.4}{1991.1995+4.1995}\)
Do \(\hept{\begin{cases}1991.1995=1991.1995\\1991.4< 1995.4\end{cases}}\Rightarrow1991.1995+1991.4< 1991.1995+1995.4\)
\(\Rightarrow\frac{1991.1995+1991.4}{1991.1995+4.1995}< \frac{1991.1995+1995.4}{1991.1995+4.1995}=1\)
\(\Rightarrow\frac{1991.1999}{1995.1995}< 1\)
Vậy \(\frac{1991.1999}{1995.1995}< 1.\)
so sánh 2 phân số sau:\(A=\frac{10^{2016}+10}{10^{2017}+10};B=\frac{10^{2017}-10}{10^{2018}-10}\)
dễ mà bạn
A=10x10+10/ 10x10x10+10
A=110/1010
a=11/101
b=10x10-10/10x10x10-10
b=90/990
b=11/110
vậy a=11/101
b=90/990
bn tự so sánh nhé ^-^
mik mỏi tay quá ko đánh đc nữa bọn mik bằng tuổi đó
câu này mik học trên lớp rùi
so sánh 2 số A và B nếu
\(A=-\frac{1}{2018}-\frac{3}{2017^2}-\frac{5}{2017^3}-\frac{7}{2017^4};B=\frac{-1}{2018}-\frac{7}{2017^2}-\frac{5}{2017^3}-\frac{3}{2017^4}\)