Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lạc Dao Dao
Xem chi tiết
Triệu Mẫn
4 tháng 5 2018 lúc 17:22

\(A=\frac{2015}{2016}+\frac{2016}{2017}+\frac{2017}{2018}\)

\(B=\frac{2015+2016+2017}{2016+2017+2018}\)

\(B=\frac{2015}{2016+2017+2018}+\frac{2016}{2016+2017+2018}+\frac{2017}{2016+2017+2018}\)

Ta có:

\(\frac{2015}{2016}>\frac{2015}{2016+2017+2018}\)

\(\frac{2016}{2017}>\frac{2016}{2016+2017+2018}\)

\(\frac{2017}{2018}>\frac{2017}{2016+2017+2018}\)

Cộng vế theo vế, ta có:

\(\frac{2015}{2016}+\frac{2016}{2017}+\frac{2017}{2018}>\frac{2015}{2016+2017+2018}+\frac{2016}{2016+2017+2018}+\frac{2017}{2016+2017+2018}\)

\(hay\frac{2015}{2016}+\frac{2016}{2017}+\frac{2017}{2018}>\frac{2015+2016+2017}{2016+2017+2018}\)

\(\Rightarrow A>B\)

Vậy A >  B

Nguyễn Lan Anh
28 tháng 5 2021 lúc 12:44
Bạn có nhầm không, tớ thấy cả hai đều giống nhau mà, Hai cái bằng nhau
Khách vãng lai đã xóa
Azami
Xem chi tiết
Nguyễn Trung Dũng
Xem chi tiết
chỉyêumìnhem
5 tháng 5 2018 lúc 11:24

=.....nha các bn. k mình nha

Nguyễn Phạm Hồng Anh
5 tháng 5 2018 lúc 11:31

Ta có : \(B=\frac{2015+2016+2017}{2016+2017+2018}\) \(=\frac{2015}{2016+2017+2018}+\frac{2016}{2016+2017+2018}+\frac{2017}{2016+2017+2018}\)

Mà \(\frac{2015}{2016}>\frac{2015}{2016+2017+2018}\)

       \(\frac{2016}{2017}>\frac{2016}{2016+2017+2018}\)

        \(\frac{2017}{2018}>\frac{2017}{2016+2017+2016}\)

Cộng vế theo vế, ta có : 

\(\frac{2015}{2016}+\frac{2016}{2017}+\frac{2017}{2018}>\frac{2015+2016+2017}{2016+2017+2018}\)

\(\Rightarrow A>B\)

Trình Nguyễn Quang Duy
Xem chi tiết
Duc Loi
17 tháng 6 2019 lúc 10:49

Ta đi so sánh \(\frac{2017.2018+1}{2017.2018}\)với\(\frac{2018.2019+1}{2018.2019}\)có :

\(\frac{2017.2018+1}{2017.2018}=\frac{2017.2018}{2017.2018}+\frac{1}{2017.2018}=1+\frac{1}{2017.2018}\left(\cdot\right)\)

\(\frac{2018.2019+1}{2018.2019}=\frac{2018.2019}{2018.2019}+\frac{1}{2018.2019}\left(\cdot\cdot\right)\)

\(\frac{1}{2017.2018}>\frac{1}{2018.2019}\left(\cdot\cdot\cdot\right)\)Từ \(\left(\cdot\right);\left(\cdot\cdot\right)\&\left(\cdot\cdot\cdot\right)\Rightarrow\frac{2017.2018+1}{2017.2018}>\frac{2018.2019+1}{2018.2019}\)

\(\Leftrightarrow\frac{2017.2018}{2017.2018+1}< \frac{2018.2019}{2018.2019+1}.\)

T.Ps
17 tháng 6 2019 lúc 10:45

#)Trả lời :

\(\frac{2017\times2018}{2017\times2018+1}=\frac{0}{1}=0\)

\(\frac{2018\times2019}{2018\times2019+1}=\frac{0}{1}=0\)

\(\Rightarrow\frac{2017\times2018}{2017\times2018+1}=\frac{2018\times2019}{2018\times2019+1}\)

khanh
17 tháng 6 2019 lúc 10:47
๖²⁴ʱŤ.Ƥεɳɠʉїɳş༉ sai bét
Phan Vũ Như Quỳnh
Xem chi tiết
Duc Loi
5 tháng 5 2018 lúc 10:50

B = \(\frac{2015+2016+2017}{2016+2017+2018}=\frac{2016.3}{2017.3}=\frac{2016}{2017}\left(1\right)\)

Mà A = \(\frac{2015}{2016}+\frac{2016}{2017}+\frac{2017}{2018}.\left(2\right)\)

Từ \(\left(1\right)\)và \(\left(2\right)\)=> A > B.

Vậy A > B . 

Xuân Hoà Đào Lê
5 tháng 5 2018 lúc 10:53

Bạn Dont look at me

Bạn nên làm theo bạn ấy

Bạn k đúng cho bạn ấy. Bởi vì bạn ấy làm đúng

Theo mk là vậy

Nguyen Dinh Duc
5 tháng 5 2018 lúc 10:58

\(A=\frac{2015}{2016}+\frac{2016}{2017}+\frac{2017}{2018}\)\(B=\frac{2015+2016+2017}{6051}\)

\(A=\frac{2015}{2016}+\frac{2016}{2017}+\frac{2017}{2018}\)\(B=\frac{2015}{6051}+\frac{2016}{6051}+\frac{2017}{6051}\)

=> A > B

Fire and Ice
Xem chi tiết
Nguyễn Tấn Phát
13 tháng 3 2019 lúc 21:01

Ta có: \(\frac{-2017}{2018}+1=\frac{1}{2018}\)

         \(\frac{-2018}{2019}+1=\frac{1}{2019}\)

Vì \(\frac{1}{2019}< \frac{1}{2018}\)

\(\Leftrightarrow\frac{-2018}{2019}+1< \frac{-2017}{2018}+1\)

\(\Leftrightarrow\frac{-2018}{2019}< \frac{-2017}{2018}\)

HOK TOT

Fire and Ice
13 tháng 3 2019 lúc 21:04

thanks bạn

An Vy
Xem chi tiết
Duc Loi
11 tháng 6 2018 lúc 8:24

Bài 1:

Ta có:

\(N=\frac{2017+2018}{2018+2019}=\frac{2017}{2018+2019}+\frac{2018}{2018+2019}\)

Do \(\hept{\begin{cases}\frac{2017}{2018+2019}< \frac{2017}{2018}\\\frac{2018}{2018+2019}< \frac{2018}{2019}\end{cases}\Rightarrow\frac{2017}{2018+2019}+\frac{2018}{2018+2019}< \frac{2017}{2018}+\frac{2018}{2019}}\)

                                                     \(\Leftrightarrow N< M\)

Vậy \(M>N.\)

Bài 2:

Ta có:

\(A=\frac{2017}{987653421}+\frac{2018}{24681357}=\frac{2017}{987654321}+\frac{2017}{24681357}+\frac{1}{24681357}\)

\(B=\frac{2018}{987654321}+\frac{2017}{24681357}=\frac{1}{987654321}+\frac{2017}{987654321}+\frac{2017}{24681357}\)

Do \(\hept{\begin{cases}\frac{2017}{987654321}+\frac{2017}{24681357}=\frac{2017}{987654321}+\frac{2017}{24681357}\\\frac{1}{24681357}>\frac{1}{987654321}\end{cases}}\)

\(\Rightarrow\frac{2017}{987654321}+\frac{2017}{24681357}+\frac{1}{24681357}>\frac{1}{987654321}+\frac{2017}{987654321}+\frac{2017}{24681357}\)

                                                                     \(\Leftrightarrow A>B\)

Vậy \(A>B.\)

Bài 3:

\(\frac{2016}{2017}+\frac{2017}{2018}+\frac{2018}{2019}+\frac{2019}{2016}=1-\frac{1}{2017}+1-\frac{1}{2018}+1-\frac{1}{2019}+1+\frac{3}{2016}\)

                                                                \(=1+1+1+1-\frac{1}{2017}-\frac{1}{2018}-\frac{1}{2019}+\frac{3}{2016}\)

                                                                \(=4-\left(\frac{1}{2017}+\frac{1}{2018}+\frac{1}{2019}-\frac{3}{2016}\right)\)

Do \(\hept{\begin{cases}\frac{1}{2017}< \frac{1}{2016}\\\frac{1}{2018}< \frac{1}{2016}\\\frac{1}{2019}< \frac{1}{2016}\end{cases}\Rightarrow\frac{1}{2017}+\frac{1}{2018}+\frac{1}{2019}< \frac{1}{2016}+\frac{1}{2016}+\frac{1}{2016}=\frac{3}{2016}}\)

\(\Rightarrow\frac{1}{2017}+\frac{1}{2018}+\frac{1}{2019}-\frac{3}{2016}\)âm

\(\Rightarrow4-\left(\frac{1}{2017}+\frac{1}{2018}+\frac{1}{2019}-\frac{3}{2016}\right)>4\)

Vậy \(\frac{2016}{2017}+\frac{2017}{2018}+\frac{2018}{2019}+\frac{2019}{2016}>4.\)

Bài 4:

\(\frac{1991.1999}{1995.1995}=\frac{1991.\left(1995+4\right)}{\left(1991+4\right).1995}=\frac{1991.1995+1991.4}{1991.1995+4.1995}\)

Do \(\hept{\begin{cases}1991.1995=1991.1995\\1991.4< 1995.4\end{cases}}\Rightarrow1991.1995+1991.4< 1991.1995+1995.4\)

\(\Rightarrow\frac{1991.1995+1991.4}{1991.1995+4.1995}< \frac{1991.1995+1995.4}{1991.1995+4.1995}=1\)

\(\Rightarrow\frac{1991.1999}{1995.1995}< 1\)

Vậy \(\frac{1991.1999}{1995.1995}< 1.\)

Nguyễn Văn Tiến
Xem chi tiết
Phạm Phương Linh
11 tháng 4 2018 lúc 21:44

dễ mà bạn

A=10x10+10/ 10x10x10+10

A=110/1010

a=11/101

b=10x10-10/10x10x10-10

b=90/990

b=11/110

vậy a=11/101

       b=90/990

bn tự so sánh nhé ^-^

mik mỏi tay quá ko đánh đc nữa bọn mik bằng tuổi đó

câu này mik học trên lớp rùi

hgfghf
Xem chi tiết
không có tên
6 tháng 4 2018 lúc 19:29

id nhu 1 tro dua