Cho hình vuông ABCD và 4 điểm MNPQ biết M thuộc AB,N thuộc BC,P thuộc CD,Q thuộc DA . Xác định vị trí của MNPQ để
a,Chu vi hình MNPQ nhỏ nhất
b,Diện tích MNPQ nhỏ nhất
Cho hình chữ nhật ABCD. M, N, P, Q là các điểm thuộc AB, BC, CD, DA. Tìm giá trị nhỏ nhất của chu vi tứ giác MNPQ. Khi đó tứ giác MNPQ là hình gì
Gọi I, H, K lần lượt là trung điểm các đoạn QM, QN, PN.
Xét tam giác AQM vuông tại A có AI là đường trung tuyến nên suy ra AI=12QMAI=12QM
IH là đường trung bình của tam giác QMN nên IH=12MNIH=12MN, IH // MN.
Tương tự KC=12NP,HK=12PQKC=12NP,HK=12PQ, HK // PQ.Do đó AI+IH+HK+KC=12PMNPQAI+IH+HK+KC=12PMNPQ
Mặt khác nếu xét các điểm A, I, H, K, C ta có: AI+IH+HK+KC≥ACAI+IH+HK+KC≥ACDo đó PMNPQ≥2ACPMNPQ≥2AC (không đổi)
Dấu “=” xảy ra khi và chỉ khi A, I, H, K, C thẳng hàng theo thứ tự đó.
Điều đó tương đương với MN//AC//QP, QM//BD//NP hay MNPQ là hình bình hành.
Vậy giá trị nhỏ nhất của chu vi MNPQ là 2AC.
Cho hình chữ nhật ABCD. M, N, P, Q là các điểm thuộc AB, BC, CD, DA. Tìm giá trị nhỏ nhất của chu vi tứ giác MNPQ. Khi đó tứ giác MNPQ là hình gì?
Cho hình chữ nhật ABCD. M, N, P, Q là các điểm thuộc AB, BC, CD, DA. Tìm giá trị nhỏ nhất của chu vi tứ giác MNPQ. Khi đó tứ giác MNPQ là hình gì? Vì sao
Gợi ý thôi nhé. gọi E,F lần lượt là trung điểm MN, PQ.
1. So sánh MN với BE, PQ với DF
2. So sánh MQ + NP với EF (gợi ý: áp dụng Thales)
3. So sánh BE + EF + DF với BD
4. Kết luận (cẩn thận khi trả lời tứ giác BDEF là hình gì)
Hiểu ko ku, nếu hiểu giải thích t cái, tìm gt nhỏ nhất của tg MNPQ đó, ko hiểu
Cho tam giác ABC vuông cân tại A. BC = 36cm. Vẽ hình chữ nhật MNPQ có M thuộc AB; Q thuộc AC; P,N thuộc BC . Xác định vị trí của MN để diện tích MNPQ lớn nhất
Cho tam giác ABC vuông cân tại A. BC = 36cm. Vẽ hình chữ nhật MNPQ có M thuộc AB; Q thuộc AC; P,N thuộc BC . Xác định vị trí của MN để diện tích MNPQ lớn nhất
1/ Cho hình vuông ABCD. Lấy M tùy ý trên cạnh BC. Đường thẳng vuông góc AM tại M, cắt CD tại N. Tìm vị trí của M để CN lớn nhất
2/ Cho hình vuông ABCD. Lấy M,N,P,Q thuộc 4 cạnh AB,BC,CD,AD. TÌm điều kiện của tứ giác MNPQ để chu vi tứ giác MNPQ nhỏ nhất
3/ Lấy I nằm trong tam giác ABC nhọn. Vẽ \(IH⊥BC,IK⊥AC,IL⊥AB\). Xác định vị trí của I để \(AL^2+BH^2+CK^2\) nhỏ nhất
4/ Cho tam giác ABC nhọn. Tìm điểm M trong tam giác sao cho AM.BC+BM.AC+CM.AB nhỏ nhất
Cho hình vuông ABCD và tứ giác MNPQ có 4 đỉnh thuộc 4 cạnh của hình vuông.
a. Chứng minh rằng\(S_{ABCD}\le\frac{AC}{4}\left(MN+NP+PQ+QM\right)\)
b. Xác điịnh vị trí điểm M, N, P, Q để chu ci tứ giác MNPQ nhỏ nhất.
Cho hình chữ nhật ABCD có AB=20cm BC=30cm
Xác định vị trí các đỉnh hình bình hành MNP
sao cho M thuộc BC N thuộc AB Q thuộc DC và MB=NB=QD=DP để diện tích MNPQ lớn nhất,
giá trị lớn nhất đó là bao nhiêu.
Cho hình vuông ABCD. Tìm vị trí M,N,P,Q thuộc AB,BC,CD,DA sao cho chu vi tứ giác MNPQ nhỏ nhất