Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Minh Nguyệt
Xem chi tiết
TítTồ
Xem chi tiết
Girl
2 tháng 7 2019 lúc 17:20

Đề thiếu ko nhỉ? cộng b^2 nữa chứ 

\(\left(a-b\right)\left(a-2b\right)\left(a-3b\right)\left(a-4b\right)+b^2\)

\(=\left[\left(a-b\right)\left(a-4b\right)\right]\left[\left(a-2b\right)\left(a-3b\right)\right]+b^2\)

\(=\left(a^2-4ab-ab+4b^2\right)\left(a^2-3ab-2ab+6b^2\right)+b^2\)

\(=\left(a^2-5ab+4b^2\right)\left(a^2-5ab+6b^2\right)+b^2=\left(a^2-5ab+5b^2\right)^2-b^2+b^2\)

\(=\left(a^2-5ab+b^2\right)^2\rightarrowđpcm\)

Dương Văn Chiến
Xem chi tiết
Nguyễn Minh Đăng
14 tháng 1 2021 lúc 20:21

Câu đề HN vừa thi hôm trước, sửa thành tìm max

Áp dụng BĐT Bunyakovsky ta có:

\(\left(\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\right)^2\le\left(1^2+1^2+1^2\right)\left(a+b+b+c+c+a\right)\)

\(=6\left(a+b+c\right)\le6\) 

\(\Rightarrow\left(\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\right)\le\sqrt{6}\)

Dấu "=" xảy ra khi a = b = c = 1/3

Làm xong mới thấy không giống lắm hihi:D

Khách vãng lai đã xóa
Dương Văn Chiến
Xem chi tiết
Trần Lê Thanh Diệu
Xem chi tiết
ngọc linh
Xem chi tiết
Nguyễn Linh Chi
11 tháng 5 2020 lúc 14:56

1) a + b = - 12  và ab = 20 

a; b là nghiệm của phương trình: \(X^2-\left(-12\right)X+20=0\)

hay \(X^2+12X+20=0\)

Giải delta tìm được nghiệm: \(X=-2\) hoặc \(X=-10\)

Vậy hai số ( a; b ) = ( -2; -10) hoặc ( a; b ) = ( -10 ; -2) 

Các bài còn lại đưa về tổng và tích rồi làm như câu 1.

Khách vãng lai đã xóa
Lê Tuấn Nghĩa
11 tháng 5 2020 lúc 15:00

a) \(\hept{\begin{cases}a+b=-12\\a.b=20\end{cases}\Leftrightarrow\hept{\begin{cases}a=-b-12\\\left(-b-12\right).b=20\end{cases}}}\)

\(\hept{\begin{cases}a=-b-12\\b^2+12b+20=0\end{cases}\Rightarrow\hept{\begin{cases}b=-2;a=-10\\b=-10;a=-2\end{cases}}}\)

b)  \(\hept{\begin{cases}a^2+b^2=25\\ab=24\end{cases}\Leftrightarrow\hept{\begin{cases}a^2+b^2=25\\2ab=48\end{cases}}}\)

=> \(a^2+b^2-2ab=-23\)\(\Leftrightarrow\left(a-b\right)^2=-23\)(vô lý) 

=> Hệ vô nghiệm 

2 ý còn lại tương tự nha bn ơi 

Khách vãng lai đã xóa
Nguyễn Linh Chi
11 tháng 5 2020 lúc 15:03

2) \(a^2+b^2=25\Leftrightarrow\left(a+b\right)^2-2ab=25\)

<=> \(\left(a+b\right)^2=25+2ab=25+2.24=73\)

<=> \(\orbr{\begin{cases}a+b=\sqrt{73}\\a+b=-\sqrt{73}\end{cases}}\)

Tìm a; b với hai trường hợp:

TH1: \(a+b=\sqrt{73};ab=24\)

TH2: \(a+b=-\sqrt{73};ab=24\)

Rồi làm như câu 1.

3) \(a-b=10\)=> \(a\ge b\)

\(a-b=10\Leftrightarrow\left(a-b\right)^2=100\Leftrightarrow\left(a+b\right)^2-4ab=100\)

<=> \(\left(a+b\right)^2=196\)

<=> a + b = 14 hoặc a + b = -14 

Xét hai trường hợp : 

TH1: a + b = 14 và a.b = 24 

TH2: a + b = -14 và ab = 24 

Rồi làm tương tự như câu 1.

Khách vãng lai đã xóa
Vo Ngoc Bao Trinh
Xem chi tiết
shitbo
14 tháng 6 2019 lúc 10:04

\(A+\frac{1}{4}=x+\frac{1}{2}.2\sqrt{x}+\left(\frac{1}{2}\right)^2=\left(\sqrt{x}+\frac{1}{2}\right)^2\ge\left(0+\frac{1}{2}\right)^2=\frac{1}{4}\)

nên: \(A_{min}=0\).Dấu "=" xảy ra khi: \(x=0\)

Monfan sub
Xem chi tiết
Đinh quang hiệp
6 tháng 5 2018 lúc 14:21

vì a;b;c >0\(\Rightarrow P=\left(a+1\right)\left(b+1\right)\left(c+1\right)>=2\sqrt{a}2\sqrt{b}2\sqrt{c}=8\cdot\sqrt{abc}=8\cdot1=8\)(bđt cosi)

dấu = xảy ra khi \(a=b=c=1\)

vậy min của P là 8 khi a=b=c=1

<span class="label label...
6 tháng 5 2018 lúc 14:20

Bạn có thể tham khảo tại:

https://olm.vn/hoi-dap/question/922685.html

Chúc bạn học giỏi

cao van duc
6 tháng 5 2018 lúc 18:48

bạn ơi sai rồi vì bất đẳng thuc co si phai la 

a+b>=2\(\sqrt{ab}\)

hay \(\frac{a+b}{2}\)>=\(\sqrt{ab}\)

VirusS MTK
Xem chi tiết