1. so sánh
\(2^{27}v\text{à}3^{18}\)
\(3^{21}v\text{à}2^{31}\)
So sánh :
\(10^{30}v\text{à}2^{100}\)
\(5^{300}v\text{à}3^{453}\)
\(29^{12}v\text{à}18^{17}\)
103và 2100
Ta có:1030=(103)10=100010
2100=(210)10=102410
Vì 1000<1024 nên 1030<2100
5300 và 3453
Ta có:5300=(52)150=25150
3453=(33)151=27151=27.27150
Vì 25 < 27.27 nên 5300<3453
nhớ k ch mình nhé
Không dùng máy tính ,hãy so sánh :
1 )\(\sqrt{7-\sqrt{21}+4\sqrt{5}}v\text{à}\sqrt{5}-1\)
2 )\(\sqrt{5}+\sqrt{10}+1v\text{à}\sqrt{35}.\)
3 )\(\frac{15-2\sqrt{10}}{3}v\text{à}\sqrt{15}.\)
1) \(A=\left(\sqrt{7-\sqrt{21}+4\sqrt{5}}\right)^2=7-\sqrt{21}+4\sqrt{5}\)
\(B=\left(\sqrt{5}-1\right)^2=6-2\sqrt{5}\)
\(\Rightarrow A-B=1-\sqrt{21}+6\sqrt{5}=\left(1+\sqrt{180}\right)-\sqrt{21}>0\)
\(\Rightarrow A>B\Rightarrow\sqrt{7-\sqrt{21}+4\sqrt{5}}>\sqrt{5}-1\)
2) \(C=\left(\sqrt{5}+\sqrt{10}+1\right)^2=5+10+1+10\sqrt{2}+2\sqrt{5}+2\sqrt{10}\)
\(=26+10\sqrt{2}+2\sqrt{5}+2\sqrt{10}>26+10>35=\left(\sqrt{35}\right)^2\)
Vậy \(\sqrt{5}+\sqrt{10}+1>\sqrt{35}\)
3) \(\left(\frac{15-2\sqrt{10}}{3}\right)^2=\frac{225-60\sqrt{10}+40}{9}=\frac{265-60\sqrt{10}}{9}=\frac{265}{9}-\frac{20\sqrt{10}}{3}< 15\)
Vậy nên \(\frac{15-2\sqrt{10}}{3}< \sqrt{15}\)
So sánh các số hữu tỉ:
a) \(\frac{-17}{24}v\text{à}\frac{-25}{31}\)
b) \(\frac{-27}{38}v\text{à}\frac{-125}{195}\)
c) \(\frac{-22}{111}v\text{à}\frac{-27}{134}\)
a)-17/24 > -25/31
b)-27/38 < -125/195
c)-22/111> -27/134
nhớ k nha!!!!!!!!!!!!!!!!!!
So sánh các số hữu tỉ:
a) \(\frac{-17}{24}v\text{à}\frac{-25}{31}\)
b) \(\frac{-27}{38}v\text{à}\frac{-125}{195}\)
c) \(\frac{-22}{111}v\text{à}\frac{-27}{134}\)
* Giải chi tiết giúp mình !
a, \(\frac{-17}{24}< \frac{-25}{31}\)
b,\(\frac{-27}{38}< \frac{-125}{195}\)
c,\(\frac{-22}{111}>\frac{-27}{134}\)
So sánh
\(a,2^{30}+3^{30}+4^{30}v\text{à}3^{20}+6^{20}+8^{20}\)
\(b,2^{30}+3^{30}+4^{30}v\text{à}3.24^{10}\)
\(c,2^0+2^1+2^2+...+2^{50}v\text{à}2^{51}\)
c) Đặt \(A=2^0+2^1+2^2+...+2^{50}\)
\(\Leftrightarrow2A=2^1+2^2+2^3...+2^{51}\)
\(\Leftrightarrow2A-A=2^1+2^2+2^3...+2^{51}\)\(-2^0-2^1-2^2-...-2^{50}\)
\(\Leftrightarrow A=2^{51}-2^0=2^{51}-1< 2^{51}\)
Vậy \(2^0+2^1+2^2+...+2^{50}< 2^{51}\)
a)Ta có: \(\hept{\begin{cases}2^{30}=\left(2^3\right)^{10}=8^{10}\\3^{30}=\left(3^3\right)^{10}=27^{10}\\4^{30}=\left(2^2\right)^{30}=2^{60}\end{cases}}\)và \(\hept{\begin{cases}3^{20}=\left(3^2\right)^{10}=9^{10}\\6^{20}=\left(6^2\right)^{10}=36^{10}\\8^{20}=\left(2^3\right)^{20}=2^{60}\end{cases}}\)
Mà \(8^{10}< 9^{10}\); \(27^{10}< 36^{10}\);\(2^{60}=2^{60}\)nên
\(8^{10}+27^{10}+2^{60}< 9^{10}+36^{10}+2^{60}\)
hay \(2^{30}+3^{30}+4^{30}< 3^{20}+6^{20}+8^{20}\)
b) Ta có: \(4^{30}=2^{30}.2^{30}=8^{10}.4^{15}\)
\(3.24^{10}=3.8^{10}.3^{10}=3^{11}.8^{10}\)
Vì \(4^{15}>3^{11}\) nên \(8^{10}.4^{15}>3^{11}.8^{10}\)
hay \(2^{30}+3^{30}+4^{30}>3.24^{10}\)
So sánh :
\(a,2^{30}v\text{à}3^{20}\)
\(b,5^{300}v\text{à}3^{500}\)
\(c,2^{24}v\text{à}3^{16}\)
\(d,\left(0,3\right)^{40}v\text{à}\left(0,1\right)^{20}\)
\(\text{a, }2^{30}=8^{10}\)
\(\text{ }3^{20}=\left(3^2\right)^{10}=9^{10}\)
\(\text{Vậy }2^{30}< 3^{20}\)
\(\text{b, }5^{300}=\left(5^3\right)^{100}=125^{100}\)
\(3^{500}=\left(3^5\right)^{100}=243^{100}\)
\(\text{Vậy }5^{300}< 243^{100}\)
\(\text{c, }2^{24}=\left(2^3\right)^8=8^8\)
\(3^{16}=\left(3^2\right)^8=9^8\)
\(\text{Vậy ...}\)
So sánh:
a)\(2^{24}v\text{à}3^{16}\)
b)\(2^{300}v\text{à}3^{200}\)
c)\(71^5v\text{à}7^{20}\)
a) Ta có \(\hept{\begin{cases}2^{24}=\left(2^6\right)^4=64^4\\3^{16}=\left(3^4\right)^4=81^4\end{cases}}\)
Mà \(64< 81\)
\(\Rightarrow64^4< 81^4\)
\(\Rightarrow2^{24}< 3^{16}\)
b) Ta có \(\hept{\begin{cases}2^{300}=\left(2^3\right)^{100}=8^{100}\\3^{200}=\left(3^2\right)^{100}=9^{100}\end{cases}}\)
Mà 8 < 9
\(\Rightarrow8^{100}< 9^{100}\)
\(\Rightarrow2^{300}< 3^{200}\)
c) Ta có \(7^{20}=\left(7^4\right)^5=2401^5\)
Ta có 71 < 2401
\(\Rightarrow71^5< 2401^5\)
\(\Rightarrow71^5< 7^{20}\)
!! K chắc câu c
@@ Học tốt
Chiyuki Fujito
a) \(2^{24}=\left(2^3\right)^8=8^8\)
\(3^{16}=\left(3^2\right)^8=9^8\)
Ta thấy 8<9\(\Rightarrow8^8< 9^8\Rightarrow2^{24}< 3^{16}\)
b) \(2^{300}=\left(2^3\right)^{100}=8^{100}\)
\(3^{200}=\left(3^2\right)^{100}=9^{100}\)
Thấy \(8< 9\Rightarrow8^{100}< 9^{100}\Rightarrow2^{300}< 3^{200}\)
c) \(7^{20}=\left(7^4\right)^5=2401^5\)
Ta thấy \(71< 2401\Rightarrow71^5< 2401^5\Rightarrow71^5< 7^{20}\)
so sánh các phân số :
a) \(\frac{18}{91}v\text{à}\frac{23}{114}\) b) \(\frac{21}{52}v\text{à}\frac{213}{523}\) c) \(\frac{1313}{9191}v\text{à}\frac{1111}{7373}\)
quy đồng các phân số sao cho chúng cùng mẫu là so sánh được
Ta có:
a)18/91=18:91=0,197802197
23/114=23:114=0,201754386
Mà:0,197802197<0,201754386 nên 18/91<23/114
b)21/52=21:52=0,403846153
213/523=213:523=0,407265774
Mà:0,403846153<0,407265774 nên 21/52<213/523
c)1313/9191=1313:9191=0,142857142
1111/7373=1111:7373=0,150684931
Mà:0,142857142<0,150684931 nên 1313/9191<1111/7373
^^^^!~~~
a) \(\frac{18}{91}=18\div91=0,1978021978\)
\(\frac{23}{114}=23\div114=0,20175438596\)
Mà \(0,1978021978< 0,20175438596\)nên \(\frac{18}{91}< \frac{23}{114}\)
b) Cũng tương tự như phần a.
c) Cũng tương tự như phần a.
Câu 1: Chứng minh:
\(31.82+125.48+21.43=125.67=1500\)
Câu 2: So sánh:
1,\(\sqrt{51}-\sqrt{5}v\text{à}\sqrt{20}-\sqrt{6}\)
2,\(\sqrt{2}+\sqrt{8}v\text{à}\sqrt{3}+3\)
3,\(\sqrt{37}-\sqrt{14}v\text{à}6-\sqrt{15}\)
4,\(\sqrt{5}+\sqrt{10}v\text{à}5,3\)