Cho m,n,p là 3 số dương và m.n.p = 1.
Chứng minh rằng (m+1)(n+1)(p+1) lớn hơn hoặc bằng 8
1.a)Cho các số dương a,b,c có tích bằng 1.Chứng minh rằng (a+1)(b+1)(c+1) lớn hơn hoặc bằng 8.
b)Chocacs số a và b không âm.Chứng minh rằng (a+b)(ab+1) lớn hơn hoặc bằng 4ab.
2.Cho các số dương a,b,c,d có tích bằng 1.Chứng minh rằng a bình +b bình +c bình +d bình +ab+cd lớn hơn hoặc bằng 6.
3.Chứng minh rằng nếu a+b+c>0.abc>0.ab+bc+ca>0 thì a>0,b>0,c>0.
3. abc > 0 nên trog 3 số phải có ít nhất 1 số dương.
Vì nếu giả sử cả 3 số đều âm => abc < 0 => trái giả thiết
Vậy nên phải có ít nhất 1 số dương
Không mất tính tổng quát, giả sử a > 0
mà abc > 0 => bc > 0
Nếu b < 0, c < 0:
=> b + c < 0
Từ gt: a + b + c < 0
=> b + c > - a
=> (b + c)^2 < -a(b + c) (vì b + c < 0)
<=> b^2 + 2bc + c^2 < -ab - ac
<=> ab + bc + ca < -b^2 - bc - c^2
<=> ab + bc + ca < - (b^2 + bc + c^2)
ta có:
b^2 + c^2 >= 0
mà bc > 0 => b^2 + bc + c^2 > 0
=> - (b^2 + bc + c^2) < 0
=> ab + bc + ca < 0 (vô lý)
trái gt: ab + bc + ca > 0
Vậy b > 0 và c >0
=> cả 3 số a, b, c > 0
1.a, Ta có: \(\left(a+b\right)^2\ge4a>0\)
\(\left(b+c\right)^2\ge4b>0\)
\(\left(a+c\right)^2\ge4c>0\)
\(\Rightarrow\left[\left(a+b\right)\left(b+c\right)\left(a+c\right)\right]^2\ge64abc\)
Mà abc=1
\(\Rightarrow\left[\left(a+b\right)\left(b+c\right)\left(a+c\right)\right]^2\ge64\)
\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(a+c\right)\ge8\left(đpcm\right)\)
sai rồi. sửa a+b=a+1, b+c=b+1, a+c=c+1 nha, thông cảm, nhìn sai đề
Cho a là số gồm 2n chữ số 1, b là số gồm n+1 chữ số 1, c là số gồm n chữ số 6 (n thuộc N và n lớn hơn hoặc bằng 1). Chứng minh rằng : a+b+c+8 là số chính phương
a=11...1:2n số 1 nên a=(10^2n - 1)/9
b=11...1:n+1 số 1 nên b=[10^(n+1) - 1]/9
c=66...6:n số 6 nên c=6*(10^n -1)/9
a+b+c+8=(10^2n - 1)/9 + [10^(n+1) - 1]/9 + 6*(10^n -1)/9 +72/9
=(10^2n - 1 + 10*10n -1 +6*10^n - 6 + 72)/9
=[ (10^n)^2 + 2*10^n(5+3) +64]/9
=[ (10^n)^2 + 2*8*10^n + 8^2]/9
= (10^n + 8 )^2/9
= [(10^n + 8 )/3]^2
vì 10^n +8=100...0 +8:tổng các chữ số chia hết cho 3 nên (10^n + 8 )/3 là 1 số nguyên =>[(10^n + 8 )/3]^2 là số chính phương
K MIK NHA BẠN
a=1.....1(2n số 1)=1....1(n số 1). +1...1(n số 1)
b=1...1(n+1 số 1)=1...1(n số 1).10+1
c=6...6(n số 6)=6.1...1(n số1)
Đặt m=1...1(n số 1) =9m+1
a+b+c+8=m.(9m+2)+10m+1+6m+8=9m^2+18m+9=(3m+3)^2 là số chính phương
Cho a là số gồm 2n chữ số 1, b là số gồm n+1 chữ số 1, c là số gồm n chữ số 6 (n thuộc N và n lớn hơn hoặc bằng 1).
Chứng minh rằng : a+b+c+8 là số chính phương
Cho a là số gồm 2n chữ số 1, b là số gồm n+1 chữ số 1, c là số gồm n chữ số 6 (n thuộc N và n lớn hơn hoặc bằng 1)..
Chứng minh rằng : a+b+c+8 là số chính phương
Cho a là số gồm 2n chữ số 1, b là số gồm n+1 chữ số 1, c là số gồm n chữ số 6 (n thuộc N và n lớn hơn hoặc bằng 1)..
Chứng minh rằng : a+b+c+8 là số chính phương
Đặ 111...11(n CS 1)=a=>10n=9a+1
a=111...11(2n CS1)=111...1(n CS 1)111...11(n CS1)=111...1(n CS1)000...00(nCS0)+111...11(n CS1)=a.(9a+1)+a
b=111...11(n+1CS1)=111..11(nCS1).10+1=10a+1
c=666...66(nCS6)=6.111...11(nCS1)=6a
=> a+b+c+8=9a2+18a+9=(3a+3)2
P/s: Khó trình bày quá
Đặ 111...11(n CS 1)=a=>10n=9a+1
a=111...11(2n CS1)=111...1(n CS 1)111...11(n CS1)=111...1(n CS1)000...00(nCS0)+111...11(n CS1)=a.(9a+1)+a
b=111...11(n+1CS1)=111..11(nCS1).10+1=10a+1
c=666...66(nCS6)=6.111...11(nCS1)=6a
=> a+b+c+8=9a2+18a+9=(3a+3)2
Đặ 111...11(n CS 1)=a=>10n=9a+1
a=111...11(2n CS1)=111...1(n CS 1)111...11(n CS1)=111...1(n CS1)000...00(nCS0)+111...11(n CS1)=a.(9a+1)+a
b=111...11(n+1CS1)=111..11(nCS1).10+1=10a+1
c=666...66(nCS6)=6.111...11(nCS1)=6a
=> a+b+c+8=9a2+18a+9=(3a+3)2
Cho tam giác ABC,các điểm M,N,P chia các đoạn thẳng AB,BC,CA theo các tỉ số là m,n,p với m,n,p khác 1.Chứng minh rằng 3 điểm M,N,P thẳng hàng khi m.n.p=1
Em tìm hiểu định lí Menelaus. Hoặc vào h.vn để các bạn giúp nhé!
Cho n là số nguyên tố lớn hơn hoặc bằng 2 sao cho n! + 1 chia hết cho n+1. Chứng minh rằng: n + 1 là hơp số
1 Cho số tự nhiên n với n > 2. Biết 2n - 1 là 1 số nguyên tố. Chứng tỏ rằng số 2n + 1 là hợp số
2 Cho 3 số: p, p+2014.k, p+2014.k là các số nguyên tố lớn hơn 3 vá p chia cho 3 dư 1. Chứng minh rằng k chia hết cho 6
3 Cho 2 số tự nhiên a và b, trong đó a là số lẻ. Chứng minh rằng 2 số a và a.b+22013là 2 số nguyên tố cùng nhau
4 Cho m và n là các số tự nhiên, m là số lẻ. Chứng tỏ rằng m và mn+8 là 2 số nguyên tố cùng nhau
5 Cho A=32011-32010+...+33-32+3-1. Chứng minh rằng a=(32012-1) : 4
6 Cho số abc chia hết cho 37. Chứng minh rằng số bca chia hết cho 37
Chứng minh răng:mọi số nguyên tố lớn hơn 3 đều có dạng 3k+1 hoặc 3k+2(k thuộc N)
b,Cho p và p+4 là các số nguyên tố (p>3)
chứng minh rằng p+8 là hợp só
c,Cho p là một số nguyên tố lớn hơn 3
Chứng tỏ rằng :(p-1)(p+1) luôn chia hết cho 24
Goi b la so nghuyen to lon hon 3 chia cho 3 xay ra 3 truong hop truong hop 1:b chia het cho 3 suy ra b khong phai la so nghuyen to (khong duoc) truong hop 2 :b chia cho 3 du 1 (duoc truong hop 3:b cia cho 3 du 2 (duoc)
b) vì p là số nguyên tố>3(gt)
=>p có dạng 3k+1 howacj 3k+2
Nếu p=3k+2
=> p+4=3k+6 ⋮ 3
mà p+4 là số nguyên tố>3(do p>3)
=>p+4=3k+6 không thỏa mãn p+4 là số nguyên tố
Nếu p=3k+1
=> p+4=3k+5 (hợp lí)
vậy p+8 là hợp số
=>p+8=3k+9 ⋮ 3
=>p+8 là hợp số
c)vì p là số nguyên tố>3(gt)
=>p lẻ =>(p-1)(p+1) là tích 2 số chẵn liên tiếp
g/s với kϵN ta có 2k(2k+2)là tích 2 chẵn liên tiếp
2k(2k+2)=4k(k+1)
với kϵN ta có k(k+1)là tích 2 số tự nhiên liên tiếp
=> k(k+1)⋮2
=>4k(k+1)⋮8
=>tích 2 số tự nhiên liên tiếp luôn chia hết cho 8
=>(p-1)(p+1) ⋮ 8 (1)
ta có p-1; p; p+1 là 3 số tự nhiên liên tiếp
=>(p-1)p(p+1)⋮3
mà p là số nguyên tố>3(gt) => p không chia hết cho 3
=> (p-1)(p+1) ⋮ 3 (2)
từ (1),(2) kết hợp với 3; 8 là 2 số nguyên tố cùng nhau
=> (p-1)(p+1) ⋮ (3.8)
=> (p-1)(p+1) ⋮ 24