Chứng minh rằng 3000 mũ 2009 trừ 1 chia hết cho 2009
Chứng minh rằng 3000 mũ 2009 chia hết cho 2009
CHỨNG MINH rằng 2009 mũ 2009 chia hết cho 2008
Chứng minh rằng 2018 mũ 2009 +1 chia hết cho 2019
\(2018\equiv-1\left(mod2019\right)\)
\(\Rightarrow2018^{2019}\equiv-1^{2019}=-1\) (mod 2019)
\(\Rightarrow2018^{2019}\equiv-1\) (mod 2019)
\(\Rightarrow2018^{2018}+1⋮2019\)
chứng minh rằng S=1+3+3 mũ 2+3 mũ 3+3 mũ 4+....+3 mũ 2009 chia hết cho 9
Chứng minh rằng 7 mũ 0 + 7 mũ 1 + 7 mũ 2 + 7 mũ 3 + ....... + 7 mũ 2008 + 7 mũ 2009 chia hết cho 8
70 + 71 + 72 + 73 + ... + 72008 + 72009
= (1 + 7) + (1 + 7) . 73 + ... + (1 + 7) . 72009
=8 + 8 . 73 + ... + 8 . 72009
= 8 . (1 + 73 + ... + 72009)
Vậy tổng trên chia hết cho 8
Ta có : ( 70 + 71 + 72 + 73 + ..... + 72008 + 72009 )
(=) ( 1 + 7 + 72 + 7 3 + ...... + 72008 + 72009 )
(=) 1 . ( 1 + 7 ) + 72 . ( 1 + 7 ) + ....... + 72008 . ( 1 + 7 )
(=) ( 1 + 7 ) . ( 1 + 72 + ..... + 72008 )
(=) 8 . ( 1 + 72 + ..... + 72008 ) chia hết cho 8 ( vì 8 chia hết cho 8 )
47. a) Chứng minh rằng : 14^14 – 1 chia hết cho 3 b) Chứng minh rằng : 2009^2009 – 1 chia hết cho 2008.
Bạn tham khảo
http://pitago.vn/question/a-chung-minh-rang-1414-1-chia-het-cho-3bchung-minh-rang-58984.html
Trường học Toán Pitago – Hướng dẫn Giải toán – Hỏi toán - Học toán lớp 3,4,5,6,7,8,9 - Học toán trên mạng - Học toán online
giải luôn hộ mình
chứng minh rằng: 2008 mũ 100 + 2008 mũ 99 chia hết cho 2009
12345 mũ 678 - 1234 mũ 677 chia hết cho 12344
a)2008100 + 200899 = 200899.(1 + 2008)=200899.2009
Từ đó suy ra : 200899+2008100 chia hết co 2009
b)
12345678 - 12345677 = 12345677. ( 12345 - 1 ) = 12345677 . 12344
=> 12345678 - 12345677 chia hết cho 12344
k nha ><Thanks
Ta có: \(2008^{100}+2008^{99}=2008^{99}\left(2008+1\right)\)
\(=2008^{99}.2009\)
Vậy \(2008^{100}+2008^{99}⋮2009\)
Chứng tỏ rằng rằng:(3 mũ 1 + 3 mũ 2 + 3 mũ 3 + 3 mũ 4 + .... + 3 mũ 2009 + 3 mũ 2010) chia hết cho 13
(31 + 32 +33 ) + (34 + 35 +36 ) + ... + (32008 + 32009 + 32010 )
= 3 ( 1+ 3 + 9 ) + 34 ( 1+ 3 +9 ) + ... + 32008 ( 1 + 3 +9 )
= 13 ( 3 + 34 + ... + 32008 ) chia hết cho 13
Chứng minh rằng
a) 19 mũ 2005 + 11 mũ 2004 chia hết cho 10
b) 19 mũ 2011 + 11 mũ 2010+ 20 mũ 11 chia hết cho 10
c)9 mũ 2n + 2009 chia hết cho 10
a,19^2005+ 11^2004 =19^4.501.19
=x1.x9
=x9
11^2004=11^4.501
=x1
x1+x9= y0
suy ra điều cần phải chứng minh
tương tự 2 câu còn lại