cho cac so duong x,y thoa x - y = x^3 + y^3. CM x^2 + y^2 < 1
cho x,y,z la cac so thuc duong thoa man x+y+z=1 tim min A=x^3/(x^2+xy+y^2)+y^3/(y^2+yz+z^2)+z^3/(z^2+zx+x^2)
a) tim GTNN, GTLN cua A = \(\sqrt{\left(x-1\right)}\)+\(\sqrt{\left(5-x\right)}\)
b) cho cac so duong x,y thoa man x+y>=3
CM: x+y+1/2x+2/y>=9/2
a ) Tìm GTLN : Áp dụng BĐT bunhiacopski, ta có :
Dầu bằng xảy ra khi \(x-1=5-x\Leftrightarrow x=3\).
Sao ko hiện làm lại :
\(\left(\sqrt{x-1}.1+\sqrt{5-x}.1\right)^2\le\) bé hơn hoặc bằng ( 1 + 1 ) ( x - 1 + 5 -x ) = 8
Tim cac cap so (x,y) duong thoa man (x-y)^3=(x-y-6)^2
cho x,y,z la cac so huu ti duong thoa man x+1/yz y +1/xz z+1/xy la cac so nguyen tim gia tri lon nhat cua bieu thuc A=x+y^2+z^3
cho cac so nguyen duong x,y thoa man
x-y=x3-y3
cmr x2+y2<1
may ban gium mk nhanh nha cam on
\(x-y=x^3-y^3\Leftrightarrow x-y=\left(x-y\right)\left(x^2+xy+y^2\right)\Leftrightarrow\left(x-y\right)\left(x^2+xy+y^2-1\right)=0..\)
\(\Leftrightarrow\orbr{\begin{cases}x-y=0\\x^2+xy+y^2=1\end{cases}.}\) Vì x và y dương nên xy >0 Do đó từ x2 + y2 + xy = 1 Suy ra : x2 + y2 < 1
Cho cac so duong x,y thoa man \(x^2+y^3\ge y^3+y^4\)
Cmr \(x^3+y^3\le x^2+y^2\le x+y\le2\)
Ta co: \(\left(y-1\right)^2\ge0\Leftrightarrow y^2-2y+1\ge0\Leftrightarrow y^4\ge2y^3-y^2\)
\(\Rightarrow x^2+y^3\ge x^3+y^4\ge2y^3-y^2+x^3\Leftrightarrow x^2+y^2\ge x^3+y^3\)
k giai tiep
tim cac so nguyen duong x y thoa man \(\frac{x}{2}+\frac{x}{y}-\frac{3}{2}=\frac{10}{y}\)
cho cac so thuc duong x,y thoa man x+y<=3.Tim GTNN cua 1/5xy + 5/x+2y+5
Cho cac so duong x,y thoa man dieu kien \(x^2+y^3\ge x^3+y^4\)
Chung minh \(x^3+y^3\le x^2+y^2\le x+y\le2\)