Những câu hỏi liên quan
hong doan
Xem chi tiết
oOo Sát thủ bóng đêm oOo
27 tháng 7 2018 lúc 14:26

tích mình đi

làm ơn

rùi mình

tích lại

thanks

Bình luận (0)
Tuan
27 tháng 7 2018 lúc 14:26

k mk đi 

Bình luận (0)
Phạm Tuấn Đạt
27 tháng 7 2018 lúc 14:35

Áp dụng BĐT bunhiacopxki ta có :\(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge\left(\sqrt{a}.\frac{1}{\sqrt{a}}+\sqrt{b}.\frac{1}{\sqrt{b}}+\sqrt{c}.\frac{1}{\sqrt{c}}\right)^2\)

\(\Rightarrow\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge\left(1+1+1\right)^2=9\)

.Dấu "=" xảy ra khi   :\(\frac{a}{\frac{1}{a}}=\frac{b}{\frac{1}{b}}=\frac{c}{\frac{1}{c}}\Leftrightarrow a^2=b^2=c^2\Leftrightarrow a=b=c\)

Mà \(a+b+c\le\frac{3}{2}\)\(\Rightarrow M=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge9:\frac{3}{2}=9.\frac{2}{3}=6\)

Vậy Min M = 6 <=> a = b = c

Bình luận (0)
VƯƠNG TRÀ MY
Xem chi tiết
Nguyễn Khánh Duy
12 tháng 9 2021 lúc 15:33

bài khó thế

Bình luận (0)
 Khách vãng lai đã xóa
Phạm Hồ Thanh Quang
Xem chi tiết
Thiên An
15 tháng 7 2017 lúc 15:45

Theo đề ta suy ra  \(y\le1-3x\)

\(\Rightarrow\sqrt{xy}\le\sqrt{x\left(1-3x\right)}\)

Ta có  \(A=\frac{1}{x}+\frac{1}{\sqrt{xy}}\ge\frac{1}{x}+\frac{1}{\sqrt{x\left(1-3x\right)}}\ge\frac{1}{x}+\frac{1}{\frac{x+\left(1-3x\right)}{2}}=\frac{2}{2x}+\frac{2}{-2x+1}\)

\(=2\left(\frac{1}{2x}+\frac{1}{-2x+1}\right)\ge2.\frac{\left(1+1\right)^2}{2x-2x+1}=8\)

Vậy  \(A\ge8\)

Đẳng thức xảy ra  \(\Leftrightarrow\)  \(\hept{\begin{cases}x=1-3x=y\\\frac{1}{2x}=\frac{1}{-2x+1}\\3x+y=1\end{cases}}\)  \(\Leftrightarrow\)  \(x=y=\frac{1}{4}\)

Bình luận (0)
Anh Thơ Nguyễn
Xem chi tiết
Lê Quang Trường
Xem chi tiết
Lê Tài Bảo Châu
Xem chi tiết
Kiệt Nguyễn
25 tháng 10 2020 lúc 15:46

Bài 4: Áp dụng bất đẳng thức AM - GM, ta có: \(P=\text{​​}\Sigma_{cyc}a\sqrt{b^3+1}=\Sigma_{cyc}a\sqrt{\left(b+1\right)\left(b^2-b+1\right)}\le\Sigma_{cyc}a.\frac{\left(b+1\right)+\left(b^2-b+1\right)}{2}=\Sigma_{cyc}\frac{ab^2+2a}{2}=\frac{1}{2}\left(ab^2+bc^2+ca^2\right)+3\)Giả sử b là số nằm giữa a và c thì \(\left(b-a\right)\left(b-c\right)\le0\Rightarrow b^2+ac\le ab+bc\)\(\Leftrightarrow ab^2+bc^2+ca^2\le a^2b+abc+bc^2\le a^2b+2abc+bc^2=b\left(a+c\right)^2=b\left(3-b\right)^2\)

Ta sẽ chứng minh: \(b\left(3-b\right)^2\le4\)(*)

Thật vậy: (*)\(\Leftrightarrow\left(b-4\right)\left(b-1\right)^2\le0\)(đúng với mọi \(b\in[0;3]\))

Từ đó suy ra \(\frac{1}{2}\left(ab^2+bc^2+ca^2\right)+3\le\frac{1}{2}.4+3=5\)

Đẳng thức xảy ra khi a = 2; b = 1; c = 0 và các hoán vị

Bình luận (0)
 Khách vãng lai đã xóa
Kiệt Nguyễn
26 tháng 10 2020 lúc 11:44

Bài 1: Đặt \(a=xc,b=yc\left(x,y>0\right)\)thì điều kiện giả thiết trở thành \(\left(x+1\right)\left(y+1\right)=4\)

Khi đó  \(P=\frac{x}{y+3}+\frac{y}{x+3}+\frac{xy}{x+y}=\frac{x^2+y^2+3\left(x+y\right)}{xy+3\left(x+y\right)+9}+\frac{xy}{x+y}\)\(=\frac{\left(x+y\right)^2+3\left(x+y\right)-2xy}{xy+3\left(x+y\right)+9}+\frac{xy}{x+y}\)

Có: \(\left(x+1\right)\left(y+1\right)=4\Rightarrow xy=3-\left(x+y\right)\)

Đặt \(t=x+y\left(0< t< 3\right)\Rightarrow xy=3-t\le\frac{\left(x+y\right)^2}{4}=\frac{t^2}{4}\Rightarrow t\ge2\)(do t > 0)

Lúc đó \(P=\frac{t^2+3t-2\left(3-t\right)}{3-t+3t+9}+\frac{3-t}{t}=\frac{t}{2}+\frac{3}{t}-\frac{3}{2}\ge2\sqrt{\frac{t}{2}.\frac{3}{t}}-\frac{3}{2}=\sqrt{6}-\frac{3}{2}\)với \(2\le t< 3\)

Vậy \(MinP=\sqrt{6}-\frac{3}{2}\)đạt được khi \(t=\sqrt{6}\)hay (x; y) là nghiệm của hệ \(\hept{\begin{cases}x+y=\sqrt{6}\\xy=3-\sqrt{6}\end{cases}}\)

Ta lại có \(P=\frac{t^2-3t+6}{2t}=\frac{\left(t-2\right)\left(t-3\right)}{2t}+1\le1\)(do \(2\le t< 3\))

Vậy \(MaxP=1\)đạt được khi t = 2 hay x = y = 1

Bình luận (0)
 Khách vãng lai đã xóa
Hà Gia Khang
25 tháng 4 2023 lúc 9:30

3. Áp dụng cô si ta có 

\(\dfrac{a^2}{b}+\dfrac{b^2}{c}+\dfrac{c^2}{a}\ge a+b+c=1\)

Lại có:

 \(3\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2=1\)

⇒ P ≥ \(2020.1+1=2021\)

Vậy Pmin = 2021 khi và chỉ khi a = b = c =1/3

Bình luận (0)
lê thị thu hà
Xem chi tiết
Yim Yim
25 tháng 5 2018 lúc 11:45

\(c+ab=\left(a+b+c\right)c+ab=ac+cb+c^2+ab=\left(a+c\right)\left(b+c\right)\)

Tương tự : \(a+bc=\left(a+b\right)\left(a+c\right);c+ab=\left(c+a\right)\left(c+b\right)\)

\(P=\sqrt{\frac{ab}{\left(c+a\right)\left(c+b\right)}}+\sqrt{\frac{bc}{\left(a+b\right)\left(a+c\right)}}+\sqrt{\frac{ca}{\left(b+c\right)\left(b+a\right)}}\)

áp dụng bất đẳng tức cauchy :

\(\sqrt{\frac{ab}{\left(c+a\right)\left(c+b\right)}}\le\frac{1}{2}\left(\frac{a}{c+a}+\frac{b}{c+b}\right)\)

\(\sqrt{\frac{bc}{\left(a+b\right)\left(a+c\right)}}\le\frac{1}{2}\left(\frac{b}{a+b}+\frac{c}{a+c}\right)\)

\(\sqrt{\frac{ca}{\left(b+c\right)\left(b+a\right)}}\le\frac{1}{2}\left(\frac{c}{b+c}+\frac{a}{b+a}\right)\)

cộng vế theo vế 

\(\Rightarrow P\le\frac{1}{2}\left(\frac{a}{a+c}+\frac{b}{c+b}+\frac{b}{a+b}+\frac{c}{a+c}+\frac{c}{b+c}+\frac{a}{b+a}\right)\)

\(\Leftrightarrow P\le\frac{1}{2}\left(\frac{a+c}{a+c}+\frac{b+c}{b+c}+\frac{a+b}{a+b}\right)=\frac{1}{2}\cdot3=\frac{3}{2}\)

dấu "=" xảy ra khi a=b=c=1/3

Bình luận (0)
Tran Le Khanh Linh
24 tháng 8 2020 lúc 20:19

Có a+b+c=1 => c=(a+b+c).c=ac+bc+c2

\(\Rightarrow c+ab=ac+bc+c^2+ab=a\left(b+c\right)+c\left(b+c\right)=\left(b+c\right)\left(a+c\right)\)

\(\Rightarrow\sqrt{\frac{ab}{c+ab}}=\sqrt{\frac{ab}{\left(c+a\right)\left(c+b\right)}}\le\frac{\frac{a}{c+b}+\frac{b}{c+b}}{2}\)

Tương tự ta có \(\hept{\begin{cases}a+bc=\left(a+b\right)\left(a+c\right)\\b+ac=\left(b+a\right)\left(b+c\right)\end{cases}\Leftrightarrow\hept{\begin{cases}\sqrt{\frac{bc}{a+bc}}=\sqrt{\frac{bc}{\left(a+b\right)\left(a+c\right)}}\le\frac{\frac{b}{a+b}+\frac{c}{a+c}}{2}\\\sqrt{\frac{ca}{b+ca}}=\sqrt{\frac{ca}{\left(b+c\right)\left(b+a\right)}}\le\frac{\frac{c}{b+c}+\frac{a}{b+a}}{2}\end{cases}}}\)

\(\Rightarrow P\le\frac{\frac{b}{a+b}+\frac{c}{c+a}+\frac{c}{b+c}+\frac{a}{a+b}+\frac{a}{c+a}+\frac{b}{c+b}}{2}\)\(=\frac{\frac{a+c}{a+c}+\frac{c+b}{c+b}+\frac{a+b}{a+b}}{2}=\frac{3}{2}\)

Dấu "=" xảy ra khi \(a=b=c=\frac{1}{3}\)

Bình luận (0)
 Khách vãng lai đã xóa
Xem chi tiết
Lê Tài Bảo Châu
10 tháng 1 2020 lúc 22:34

tham khảo

https://olm.vn/hoi-dap/detail/106887527253.html

Bình luận (0)
 Khách vãng lai đã xóa
Lê Minh Đức
Xem chi tiết
bùi thị ngọc linh
31 tháng 8 2017 lúc 20:27

bạn vào đây tham khảo nè 

Câu hỏi của Tuấn Anh - Toán lớp 9 | Học trực tuyến

Bình luận (0)
Nguyễn Thiều Công Thành
31 tháng 8 2017 lúc 22:53

hơi lằng nhằng 1 chút

\(P=\frac{a}{\sqrt{a+2c}+1}+\frac{b}{\sqrt{b+2a}+1}+\frac{c}{\sqrt{c+2b}+1}\)

áp dụng cô si ta có:

\(\left(\sqrt{a+2c}+1\right)^2\le2\left(a+2c+1\right)=2\left(2a+b+3c\right)\)

tương tự \(\Rightarrow P\ge\frac{a}{\sqrt{2\left(2a+b+3c\right)}}+\frac{b}{\sqrt{2\left(2b+c+3a\right)}}+\frac{c}{\sqrt{2\left(2c+a+3b\right)}}\)

mà \(\sqrt{2\left(2a+b+3c\right)}\le\frac{2a+b+3c+2}{2}=\frac{4a+3b+5c}{2}\)

\(\Rightarrow P\ge\frac{2a}{4a+3b+5c}+\frac{2b}{4b+3c+5a}+\frac{2c}{4c+3a+5b}\)

\(=\frac{2a^2}{4a^2+3ab+5ac}+\frac{2b^2}{4b^2+3bc+5ab}+\frac{2c^2}{4c^2+3ac+5bc}\ge\frac{2\left(a+b+c\right)^2}{4\left(a+b+c\right)^2}=\frac{1}{2}\)

Bình luận (0)