Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
nguyễn thị khánh ly
Xem chi tiết
I don
23 tháng 4 2018 lúc 17:01

( Bn xem lại đầu bài giúp mk nha, phải là ...< 1 chứ)

a) ta có: \(\frac{1}{2^2}< \frac{1}{1.2};\frac{1}{3^2}< \frac{1}{2.3};\frac{1}{4^2}< \frac{1}{3.4};...;\frac{1}{50^2}< \frac{1}{49.50}\)

\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{50^2}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\)

                                                                        \(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)

                                                                         \(=1-\frac{1}{50}=\frac{49}{50}\)

mà \(\frac{49}{50}< 1\)

\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{50^2}< 1\left(đpcm\right)\)

b) ta có: \(\frac{1}{2^2}< \frac{1}{1.2};\frac{1}{3^2}< \frac{1}{2.3};\frac{1}{4^2}< \frac{1}{3.4};...;\frac{1}{60^2}< \frac{1}{59.60}\)

\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{60^2}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{59.60}\)

                                                                    \(=1-\frac{1}{60}=\frac{59}{60}< 1\)

\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{60^2}< 1\left(đpcm\right)\)

xem lại giúp mk nha

nguyễn thị khánh ly
23 tháng 4 2018 lúc 17:21

Ừ đúng rồi đó mình viết sai đề cảm ơn bạn nha

Nguyễn Cương
Xem chi tiết
Đinh Thùy Linh
12 tháng 6 2016 lúc 16:06

Bài này mình không tính nhanh được, còn nếu tính bình thường thì:

Chắc bạn đã biết cách tính tổng của dãy số cách đều, ta có: \(1+2+3+...+n=\frac{n\left(n+1\right)}{2}\) 

Do đó tổng cần tìm của bạn là:

\(S=\frac{1}{1+2}+\frac{1}{1+2+3}+\frac{1}{1+2+3+4}+...+\frac{1}{1+2+3+4+...+50}\)

\(S=\frac{1}{\frac{2\cdot3}{2}}+\frac{1}{\frac{3\cdot4}{2}}+\frac{1}{\frac{4\cdot5}{2}}+...+\frac{1}{\frac{50\cdot51}{2}}=\frac{2}{2\cdot3}+\frac{2}{3\cdot4}+\frac{2}{4\cdot5}+...+\frac{2}{50\cdot51}\)

Vậy, \(\frac{1}{2}S=\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+...+\frac{1}{50\cdot51}\)

\(\frac{1}{2}S=\frac{3-2}{2\cdot3}+\frac{4-3}{3\cdot4}+\frac{5-4}{4\cdot5}+...+\frac{51-50}{50\cdot51}\)

\(\frac{1}{2}S=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{50}-\frac{1}{51}=\frac{1}{2}-\frac{1}{51}=\frac{51-2}{2\cdot51}=\frac{49}{2\cdot51}\)

Vậy \(S=\frac{49}{51}\)

Bài này chắc không phải lớp 4 nhé bạn!

Xử Nữ dễ thương
Xem chi tiết
phạm thị kim yến
24 tháng 6 2017 lúc 16:15

(50-1):1+1=50 số

=(50-49)+(48-47)+...+(4-3)+(2-1). Ta có 25 cặp số

=1+1+1+....+1

=1.25

=25

Xử Nữ dễ thương
24 tháng 6 2017 lúc 16:17

vậy còn phần B bạn ơi giải lun cho mk đi 

Aphrodite
24 tháng 6 2017 lúc 16:17

A= 50-49+49-48+48-47+......+3-2+2-1

A=50-1

A=49

B=50-49+48-47+46-45+.....+4-3+2-1

B=(50-49)+(48-47)+(46-45)+.....+(4-3)+(2-1)

B= 1+1+1+.....+1+1

B=1x25

B=25

Mình không chắc chắn lắm đâu nhé!

kaitokid
Xem chi tiết
Phạm Mỹ Châu
17 tháng 3 2018 lúc 20:40

đề = \(\frac{2}{2.3}+\frac{2}{3.4}+...+\frac{2}{50.51}\)( áp dụng c.thức tính tổng )

     = ..........

     = 2 .( \(\frac{1}{2}-\frac{1}{51}\)

     = dễ

Trần Hà trang
Xem chi tiết
VỰA MUỐI NHẠT
Xem chi tiết
Vũ Văn Dương
15 tháng 1 2018 lúc 19:28

1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các câu hỏi hay lên diễn đàn;

2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.

3. Không "Đúng" vào các câu trả lời linh tinh nhằm gian lận điểm hỏi đáp.

Các bạn vi phạm 3 điều trên sẽ bị giáo viên của Online Math trừ hết điểm hỏi đáp, có thể bị khóa tài khoản hoặc bị cấm vĩnh viễn không đăng nhập vào trang web.

kim thanh
15 tháng 1 2018 lúc 19:29

Ý nghĩa : Tự mà nói yếu nghĩa đừng bảo người ta😤😠😡

Đỗ Mai Xuân Diệu
Xem chi tiết
Phạm Anh Đức
7 tháng 11 2021 lúc 10:52

ai mak bt được

Khách vãng lai đã xóa
Erika Alexandra
Xem chi tiết
đỗ mai hạnh
Xem chi tiết