Tìm các số nguyên dương a, b, c đôi một nguyên tố cùng nhau thỏa mãn:
1/a +1/b = 1/c
Tìm các số nguyên dương a, b, c đôi một nguyên tố cùng nhau thoả mãn:
1/a + 1/b = 1/c
tìm các số nguyên dương a,b,c đôi một khác nhau thỏa mãn 1/a + 1/b + 1/c = 1
Tìm ba số nguyên dương a, b, c đôi một nguyên tố cùng nhau thỏa mãn tổng hai số bất kỳ chia hết cho số còn lại.
+)Ta có:a+b\(⋮\)c
a+c\(⋮\)b
b+c\(⋮\)a
=>(a+b)+(a+c)+(b+c)\(⋮\)a+b+c
=>a+b+a+c+b+c\(⋮\)a+b+C
=>2a+2b+2c\(⋮\)a+b+c
=>2.(a+b+c)\(⋮\)a+b+c
=>a+b+c\(⋮\)2
Th1:a=2;b và c là số nguyên tố lẻ chì chia hết cho 2
TH2:a và c là số nguyên tố lẻ;b=2
TH3:a và b là số nguyên tố lẻ,c=2
Vậy cả 3 TH trên đều thỏa mãn
Chúc bn học tốt
cho các số nguyên dương a,b,c đôi 1 nguyên tố cùng nhau thoả mãn (a+b)c=ab.cm M= a+b là số chính phương
Cho các số nguyên dương a;b;c đôi một nguyên tố cùng nhau, thỏa mãn: (a+b)c=ab.
Xét tổng M=a+b có phải là số chính phương không ? Vì sao?
Gọi UCLN của a-c và b-c là d
mà a; b; c là 3 số đôi một nguyên tố cùng nhau nên d = 1
Do đó a-c và b-c là hai số chính phương. Đặt a-c = p2; b-c = q2
( p; q là các số nguyên)
c2 = p2q2c = pq a+b = (a- c) + (b – c) + 2c = ( p+ q)2 là số chính phương
tích mik nhé
Cho các số nguyên dương a;b;c đôi một nguyên tố cùng nhau, thỏa mãn: (a+b)c=ab.
Xét tổng M=a+b có phải là số chính phương không ? Vì sao?
\
Gọi UCLN của a-c và b-c là d
mà a; b; c là 3 số đôi một nguyên tố cùng nhau nên d = 1
Do đó a-c và b-c là hai số chính phương. Đặt a-c = p2; b-c = q2
( p; q là các số nguyên)
c2 = p2q2c = pq a+b = (a- c) + (b – c) + 2c = ( p+ q)2 là số chính phương
Gọi UCLN của a‐c và b‐c là d
mà a; b; c là 3 số đôi một nguyên tố cùng nhau nên d = 1
Do đó a‐c và b‐c là hai số chính phương. Đặt a‐c = p2; b‐c = q2
﴾ p; q là các số nguyên﴿
c2 = p2q2c = pq a+b = ﴾a‐ c﴿ + ﴾b – c﴿ + 2c = ﴾ p+ q﴿2 là số chính phương
Tìm các số nguyên dương a,b,c đôi một nguyên tố cùng nhau sao cho \(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)là số nguyên.
Cho các số nguyên dương a;b;c đôi một nguyên tố cùng nhau, thỏa mãn: \(\left(a+b\right).c=ab\) Xét tổng M=a+b có là số chính phương không ? Vì sao?
Gọi ƯCLN của a‐c và b‐c là d
Mà a; b; c là 3 số đôi một nguyên tố cùng nhau nên d = 1
Do đó a‐c và b‐c là hai số chính phương. Đặt a‐c = p2; b‐c = q2
﴾ p; q là các số nguyên﴿
c2 = p2q2c = pq a+b = ﴾a‐ c﴿ + ﴾b – c﴿ + 2c = ﴾ p+ q﴿2 là số chính phương.
cho 3 số a,b,c đôi một nguyên tố cùng nhau thỏa mãn 1/a+1/b+1/c.hỏi a+b có phải là một số chính phương không?
a) Cho a, b, c là ba số nguyên dương nguyên tố cùng nhau thỏa mãn: \(\frac{1}{a}+\frac{1}{b}=\frac{1}{c}\) hỏi a + b có là số chính phương không? vì sao?
b) Cho x, y, z là các số dương thỏa mãn: z ≥ 60, x + y + z = 100. Tìm GTLN của A = xyz
Ta có:
\(\frac{1}{a}+\frac{1}{b}=\frac{1}{c}\Leftrightarrow\left(a+b\right)c=ab\Leftrightarrow ab-bc-ab=0\)
Hay \(ab-bc-ab+c^2=c^2\Leftrightarrow\left(b-c\right)\left(a-c\right)=c^2\)
Nếu \(\left(b-c;a-c\right)=d\ne1\Rightarrow c^2=d^2\left(loai\right)\)
Vậy \(\left(b-c;a-c\right)=1\Rightarrow c-b;c-a\) là 2 số chính phương
Đặt \(b-c=n^2;a-c=m^2\)
\(\Rightarrow a+b=b-c+a-c+2c=m^2+n^2+2mn=\left(m+n\right)^2\) là số chính phương
cho mình hỏi tại sao ở TH1: c^2=d^2 lại loại vậy ạ