Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Dương Tiến	Khánh
Xem chi tiết
Đăng Hưng
9 tháng 8 2021 lúc 22:13

Viết n+1 số đã cho dưới dạng : 

a1=2k1b1,a2=2k2b2,...,an+1=2kn+1bn+1a1=2k1b1,a2=2k2b2,...,an+1=2kn+1bn+1

trong đó b1,b2,...,bn+1 là các số lẻ. Ta có 1≤b1,b2,...,bn+1≤2n−11≤b1,b2,...,bn+1≤2n−1

Mà trong khoảng từ 1 đến 2n-1 có n số lẻ nên tồn tại 2 số p khác q sao cho bp=bqbp=bq

Khi đó apap và aqaq có 1 số là bội của số kia

đúng nhớ k cho mình 1 cái nha chúc bn hok tốt

Khách vãng lai đã xóa
Soccer
Xem chi tiết
Nguyễn Nhật Minh
12 tháng 8 2016 lúc 12:32

\(6^{2n+1}+5^{n+2}=6\left(36^n-5^n\right)+31.5^n\)

Nhóc_Siêu Phàm
10 tháng 12 2017 lúc 21:36

= 6^(2n+1) + 5^(n+2) 
=36^n×6+5^n×25 
=36^n×6+5^n(31-6) 
=36^n×6+5^n×31-5^n×6 
=6(36^n-5^n)+5^n×31 
=6.31(36^(n-1)+...+5^(n-1))+5^n×31 
=[6(36^(n-1)+...+5^(n-1))+5^n] ×31
=>  6^(2n+1) + 5^(n+2) chia hết cho 31

Thảo
Xem chi tiết
Nguyễn Thị Anh
18 tháng 6 2016 lúc 15:47

a=b(mod n) là công thức dùng để chỉ a,b có cùng số dư khi chia cho n, gọi là đồng dư thức 
Ta có các tính chất cua đồng dư thức và các tính chất sau: 
Cho x là số tự nhiên 
Nếu x lẻ thì => x^2 =1 (mod 8) 
x^2 =-1(mod 5) hoặc x^2=0(mod 5) 
Nếu x chẵn thì x^2=-1(mod 5) hoặc x^2 =1(mod 5) hoặc x^2=0(mod 5) 
Vì 2a +1 và 3a+1 là số chính phương nên ta đặt 
3a+1=m^2 
2a+1 =n^2 
=> m^2 -n^2 =a (1) 
m^2 + n^2 =5a +2 (2) 
3n^2 -2m^2=1(rút a ra từ 2 pt rồi cho = nhau) (3) 
Từ (2) ta có (m^2 + n^2 )=2(mod 5) 
Kết hợp với tính chất ở trên ta => m^2=1(mod 5); n^2=1(mod 5) 
=> m^2-n^2 =0(mod 5) hay a chia hết cho 5 
từ pt ban đầu => n lẻ =>n^2=1(mod 8) 
=> 3n^2=3(mod 8) 
=> 3n^2 -1 = 2(mod 8) 
=> (3n^2 -1)/2 =1(mod 8) 
Từ (3) => m^2 = (3n^2 -1)/2 
do đó m^2 = 1(mod 8) 
ma n^2=1(mod 8) 
=> m^2 - n^2 =0 (mod 8) 
=> a chia hết cho 8 
Ta có a chia hết cho 8 và 5 và 5,8 nguyên tố cùng nhau nên a chia hết cho 40.Vậy a là bội của 40 

Băng Nhi
Xem chi tiết
naruto toản
17 tháng 4 2016 lúc 5:57

acswrdwrdewredryrfgytrutyut

jrhjrhejhtrttt

gjgrhgwerhj34wr

hfurjr34.wtb4wg5  

Trần Đình Duy Hưng
31 tháng 5 2021 lúc 14:04

Vì a và b là 2 số lẻ liên tiếp => a=4k+1 và b=4k+3

=>(a+b):2=(4k+3+4k+1):2=(8k+4):2=4k+2

Vì 4k+2 chia hết cho 2 và 4k+2>2=>4k+2 là HS

=>(a+b):2 là HS

Khách vãng lai đã xóa
Moon Thảo
Xem chi tiết
Edogawa Conan
23 tháng 4 2020 lúc 10:38

B1. Ta có: A= \(\frac{4n-1}{2n+3}+\frac{n}{2n+3}=\frac{4n-1+n}{2n+3}=\frac{5n-1}{2n+3}\)

=> 2A = \(\frac{10n-2}{2n+3}=\frac{5\left(2n+3\right)-17}{2n+3}=5-\frac{17}{2n+3}\)

Để A là số nguyên <=> 2A là số nguyên <=> \(\frac{17}{2n+3}\in Z\)

<=> 17 \(⋮\)2n + 3 <=> 2n + 3 \(\in\)Ư(17) = {1; -1; 17; -17}

Lập bảng:

 2n + 3 1 -1 17 -17
  n -1 -2 7 -10

Vậy ....

Khách vãng lai đã xóa
Tran Le Khanh Linh
23 tháng 4 2020 lúc 10:38

Bài 2:

Gọi d là ƯCLN (7n-1; 6n-1) (d thuộc N*)

\(\Rightarrow\hept{\begin{cases}7n-1⋮d\\6n-1⋮d\end{cases}\Rightarrow\hept{\begin{cases}6\left(7n-1\right)⋮d\\7\left(6n-1\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}42n-6⋮d\\42n-7⋮d\end{cases}}}\)

=> 42n-7-42n+6 chia hết cho d

=> -1 chia hết cho d

mà d thuộc N* => d=1

=> ƯCLN (7n-1; 6n-1)=1

=> đpcm

Khách vãng lai đã xóa
Jennie Kim
23 tháng 4 2020 lúc 10:43

b2 : 

gọi d là ƯC(7n - 1;6n - 1) 

\(\Rightarrow\hept{\begin{cases}7n-1⋮d\\6n-1⋮d\end{cases}}\Rightarrow\hept{\begin{cases}6\left(7n-1\right)⋮d\\7\left(6n-1\right)⋮d\end{cases}\Rightarrow\hept{\begin{cases}42n-6⋮d\\42n-7⋮d\end{cases}}}\)

\(\Rightarrow42n-6-42n+7⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d\in\left\{\pm1\right\}\)

\(\Rightarrow\frac{7n-1}{6n-1}\) là phân số tối giản

Khách vãng lai đã xóa
Aya Sakura
Xem chi tiết
Nguyễn Thế Tùng
17 tháng 4 2016 lúc 10:07

câu 1 bạn xét p là 2 số có 2 dạng là 3k+1 và 3k+2

câu 2 xét số đó là có dạng ab và xét từng tr hợp số chẵn lẻ

mik k có thời gian nên k vt đc cho bạn nên bạn tự lm nha

hộ

hoàng linh chi
Xem chi tiết
Tạ Như Ngọc Nga
28 tháng 10 2017 lúc 19:22

ý bn là chia hết cho 31 hả ?

hoàng linh chi
28 tháng 10 2017 lúc 19:26

đây là câu chia hết cho 31 nhé , em ghi nhầm

Tạ Như Ngọc Nga
28 tháng 10 2017 lúc 19:33

\(A=\left(2+2^2+2^3+2^4+2^5\right)+\)\(+\left(2^6+2^7+2^8+2^9+2^{10}\right)+...+\)\(+...+\left(2^{96}+2^{97}+2^{98}+2^{99}+2^{100}\right)\)

\(A=2.\left(2^2+2^3+2^4+2^5\right)+...+\)\(2^{96}.\left(2^{97}+2^{98}+2^{99}+2^{100}\right)\)

\(A=2.31+...+2^{96}.31⋮31\)

\(\Rightarrow A⋮31\)

ukraine
Xem chi tiết
Thiên ân
17 tháng 8 2018 lúc 21:47

đặt M là n^3 -9n^2+2n.

TH1 : n có dạng 2k => M chia hết cho 2 (bạn  tự cm)

TH2 ; n có dạng 2k+1 => M = (2k+1)^3-9(2k+1)^2+2n

=8k^3+6k+12k^2+1-9(4k^2+4k+1)+2n = ... => M chia hết cho 2 với mọi n (1)

Xét n có dạng 3k => M chia hết cho 3

Xét n có dạng 3k+1 => n^3+2n=(3k+1)^3+2(3k+1)=27k^3+9k+27k^2+6k+3 chia hết cho 3 mà 9n^2 cũng chia hết cho 3 => M chia hết cho 3

Tương tự bạn xét n =3k+2....

=> M chia hết cho 3 vs mọi n (2)

Từ (1) (2) => M chia hết cho 6

ukraine
17 tháng 8 2018 lúc 21:52

còn cách lm khác k bạn?

Đình Sang Bùi
17 tháng 8 2018 lúc 21:56

n^3-9n^2+2n=n^3+3n^2+2n-12n^2=n^3+n^2+2n^2+2n-12n^2

=n^2(n+1)+n(n+1)-12n^2

=(n^2+n)(n+1)-12n^2

=n(n+1)(n+2)-12n^2

Do n(n+1(n+2) là 3 số nguyên liên tiếp nên chia hết cho 6, 12n^2 chia hết cho 6 nên n(n+1)(n+2)-12n^2 chia hết cho 6

Hay n^3-9n^2+2n chia hết cho 6(ĐCCM)

Phạm Trung Thành
Xem chi tiết