Tìm x,y thuộc Z thỏa
x2 +(y-3)2 =0
Giải đầy đủ hộ mình nhé :
Bài 1: Tìm x,y,;biết
a, x+y=2
b,y+z=3
c,z+x=-5
Bài 2 : Tìm x,y thuộc Z, biết (x-3).(y+2)=-5
Bài 3 : Tìm a thuộc Z, biết a.(a+2)<0
Bài 4 : Tìm x thuộc Z, sao cho (x2 -4).(x2-10)<0
Bài 5 Tìm x thuộc Z, biết (x2-1).(x2-4)<0
bài 2: (x-3).(y+2) = -5
Vì x, y \(\in\)Z => x-3 \(\in\)Ư(-5) = {5;-5;1;-1}
Ta có bảng:
x-3 | 5 | -5 | -1 | 1 |
y+2 | 1 | -1 | -5 | 5 |
x | 8 | -2 | 2 | 4 |
y | -1 | -3 | -7 | 3 |
bài 3: a(a+2)<0
TH1 : \(\orbr{\begin{cases}a< 0\\a+2>0\end{cases}}\)=>\(\orbr{\begin{cases}a< 0\\a>-2\end{cases}}\)=> -2<a<0 ( TM)
TH2: \(\orbr{\begin{cases}a>0\\a+2< 0\end{cases}}\Rightarrow\orbr{\begin{cases}a>0\\a< -2\end{cases}}\Rightarrow loại\)
Vậy -2<a<0
Bài 5: \(\left(x^2-1\right)\left(x^2-4\right)< 0\)
TH 1 : \(\hept{\begin{cases}x^2-1>0\\x^2-4< 0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x^2>1\\x^2< 4\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x>1\\x< 2\end{cases}}\)\(\Rightarrow\)1 < a < 2
TH 2: \(\hept{\begin{cases}x^2-1< 0\\x^2-4>0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x^2< 1\\x^2>4\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x< 1\\x>2\end{cases}}\)\(\Rightarrow\)loại
Vậy 1<a<2
1.Tìm x;y thuộc N : x^3 -7=y^2
2.Tìm p;q thuộc P và x thuộc z thỏa mãn: x^5+px+3q=0
3, Tìm x;y thuộc Z thỏa mãn 6x^3-xy(11x+3y)+2y^3=6
tìm x,y thuộc Z ,biêt: (2x-1).(2x+1)=-35
tìm c,y thuộc Z , biết: (x+1)^2 + (y+1)^2 + (x-y)^2 =2
tìm x,y thuộc Z, biết: (x^2-8).(x^2-15)<0
tìm x,y thuộc Z biết: x=6.y và|x|-|y|=60
tìm a,b thuộc Z biết: |a|+|b|<2
Tìm x y z thuộc tập Z biết (x - 3)^2 + (y - 4)² + (x^2 - xz)^2020 = 0
Ta có ( x - 3 )2 + ( y - 4 )2 + ( x2 - xz )2020 = 0
Vì ( x - 3 )2 ≥ 0 với ∀x
( y - 4 )2 ≥ 0 với ∀y
( x2 - xz )2020 ≥ 0 với ∀x; ∀z
⇒ ( x - 3 )2 + ( y - 4 )2 + ( x2 - xz )2020 ≥ 0
Dấu " = " xảy ra khi
\(\left\{{}\begin{matrix}\left(x-3\right)^2=0\\\left(y-4\right)^2=0\\\left(x^2-xz\right)^{2020}=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x-3=0\\y-4=0\\x^2-xz=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=3\\y=4\\z=3\end{matrix}\right.\)
Vậy x = 3; y = 4; z = 3
1.TÌM x,y,z thuộc Z
a) /x-1/ +/y+2/+/z-3/=0
Tìm x,y thuộc Z biết: x - 2 * x * y + y - 3 = 0
x-2xy+y-3=0
x-2xy+y-2-1=0
x(2-y)-2-y-1=0 (quy tắc đổi dấu)
(2-y)(x-1)-1=0
(2-y)(x-1)=1
khi tích hai số =1 thì cả hai số phải cugf dương hoặc cùng âm (đều bằng -1 hoặc 1)
Th1 cùng dương
2-y=1
y=1
x-1=1
x=2
TH2 cùng âm
2-y=-1
y=3
x-1=-1
x=0
1)Tìm x thuộc Z:
a)(x-2)2-9=7
b)/x-2/-9=7
2) Tìm x,y thuộc Z:
a)/x-5/+/y-7/≤0
b)/x+3/+(y+2019)2≤0
1a) (x - 2)2 - 9 = 7
=> (x - 2)2 = 7 + 9
=> (x - 2)2 = 16
=> (x - 2)2 = 42
=> \(\orbr{\begin{cases}x-2=4\\x-2=-4\end{cases}}\)
=> \(\orbr{\begin{cases}x=6\\x=-2\end{cases}}\)
Vậy ...
1b) |x - 2| - 9 = 7
=> |x - 2| = 7 + 9
=> |x - 2| = 16
=> \(\orbr{\begin{cases}x-2=16\\x-2=-16\end{cases}}\)
=> \(\orbr{\begin{cases}x=18\\x=-14\end{cases}}\)
2a) |x - 5| + |x - 7| \(\le\)0
Ta có: |x - 5| \(\ge\)0 \(\forall\)x
|y - 7| \(\ge\) 0 \(\forall\)y
=> |x - 5| + |y - 7| \(\ge\)0 \(\forall\)x,y
+) Với |x - 5| + |y - 7| = 0
=> \(\hept{\begin{cases}x-5=0\\y-7=0\end{cases}}\)
=> \(\hept{\begin{cases}x=5\\y=7\end{cases}}\)
+) Với |x - 5| + |y - 7| < 0
=> ko có giá trị x,y nào thõa mãn
Tìm x,y,z thuộc N* thỏa mãn hệ: x+y-z=0 và x3+y3-z2=0.
bài 3 tìm x thuộc z biết
3x2 + 12x=0 (x2+5) .(x+3)>0
bài 4 tìm x,y thuộc z
(x-2) (y+3) =5
Tìm x, y thuộc Z biết:
a) x ( x + 6 ) = 0
b) ( x − 3 ) . ( y + 7 ) = 0
c) ( x − 2 ) ( x 2 + 2 ) = 0
a) x ( x + 6 ) = 0 ⇔ x = 0 x + 6 = 0 ⇔ x = 0 x = − 6
Vậy x = 0 hoặc x = - 6
b) ( x − 3 ) . ( y + 7 ) = 0 ⇔ x − 3 = 0 y + 7 = 0 ⇔ x = 3 y = − 7
Vậy x = 3 hoặc x = -7
c) ( x − 2 ) ( x 2 + 2 ) = 0 ⇔ x − 2 = 0 x 2 + 2 = 0 ⇔ x = 2 x 2 = − 2 ( L )
Vậy x = 2