Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
☆MĭηɦღAηɦ❄
Xem chi tiết
Không Tên
5 tháng 4 2018 lúc 20:36

\(M=\frac{5}{1.2.3}+\frac{5}{2.3.4}+\frac{5}{3.4.5}+...+\frac{5}{10.11.12}\)

\(=\frac{5}{2}\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+\frac{2}{3.4.5}+....+\frac{2}{10.11.12}\right)\)

\(=\frac{5}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{10.11}-\frac{1}{11.12}\right)\)

\(=\frac{5}{2}\left(\frac{1}{1.2}-\frac{1}{11.12}\right)\)

\(=\frac{5}{2}.\frac{65}{132}=\frac{325}{264}\)

Nguyễn Xuân Thông
5 tháng 4 2018 lúc 20:53

\(=\frac{5}{3}\left(\frac{1}{1\times2}-\frac{1}{2\times3}+...+\frac{1}{10\times11}-\frac{1}{11\times12}\right)\)

\(=\frac{5}{3}\times\left(\frac{1}{1\times2}-\frac{1}{11\times12}\right)\)

\(=\frac{5}{3}\times\left(1-\frac{1}{2}+\frac{1}{11}-\frac{1}{12}\right)\)

\(=\frac{5}{3}\times\frac{67}{132}\)

\(=\frac{335}{396}\)

Ngọc Ánh Trương
Xem chi tiết
Nguyệt
12 tháng 10 2018 lúc 12:16

đặt S=1.2.3+2.3.4+....+47.48.49

4S=1.2.3.(4-0)+2.3.4.(5-1)+...+47.48.49.(50-46)

4S=1.2.3.4-1.2.3+2.3.4.5-1.2.3.4+....+47.48.49.50-46.47.48.49

4S=47.48.49.50-1.2.3

S=(47.48.49.50-1.2.3):4

Edogawa Conan_ Kudo Shin...
12 tháng 10 2018 lúc 12:31

cool queen đúng rồi

Thấu Minh Phong
12 tháng 10 2018 lúc 12:34

???????????

Tôi Vô Danh
Xem chi tiết

gọi biểu thức là A

ta có : 

A=3/1.2.3 + 5/2.3.4 +  7/3.4.5 +....+ 2017/1008.1009.1010

A= (1.2/1.2.3 + 2.2/2.3.4 + 3.2/3.4.5 + ... + 1008.2/1008.1009.1010) + (1/1.2.3 + 1/2.3.4 + 1/3.4.5 +...+ 1/1008.1009.1010)

A=(2/2.3 + 2/3.4 + 2/4.5 +...+ 2/1009.1010 + 1/2.(1/1.2-1/2.3+1/2.3-1/3.4+1/3.4-1/4.5 + ... + 1/1008.1009 - 1/1009.1010

A=2(1/2-1/3+1/3-1/4+1/4-1/5+...+1/1009-1/1010)+1/2.(1/2-1/1009.1/1010)

A<2.1/2 + 1/2.1/2 = 1+1/4 = 5/4 

OK nhớ tk cho mình nhé ( dấu này / là dấu phần nhé) chúc bạn học tốt

Tôi Vô Danh
10 tháng 4 2019 lúc 11:58

thank

trinh thi quynh anh
Xem chi tiết
Trương Thị Minh Thư
22 tháng 3 2015 lúc 9:41

A=6+16+30+48+...+19600+19998

2A = 1.3+2.4+3.5+...+99.101 

B=2+5+9+14+...+4949+5049

2A = 1.4+2.5+3.6+...+99.102

C=1.2.3+2.3.4+3.4.5+...+98.99.100

4A = 1.2.3.4+2.3.4(5-1)+3.4.5.(6-2)+...+98.99.100.(101-97)
4A = 1.2.3.4+2.3.4.5-1.2.3.4+3.4.5.6-2.3.4.5+...+98.99.100.101-97.98.99.100
4A = 98.99.100.101

conan
21 tháng 9 2016 lúc 22:02

A=6+16+30+48+...+19600+19998

A : 2 = 3 + 8 + 15 + 24  + . . . + 9800 + 9999

A : 2 = 1.3 + 2.4 + 3.5 + 4.6 + . . . + 98.100 + 99.101

A : 2 = 1.[1+2] + 2.[1+3] + 3.[1+4] + 4.[1+5] + . . . + 98.[1+99] + 99.[1+100]

A : 2 = 1 + 1.2 + 2 + 2.3 + 3 + 3.4 + 4 + 4.5 + . . . + 98 + 98.99 + 99 + 99.100

A : 2 = 1 + 2 + 3 + 4 + . . . + 199 + 1.2 + 2.3 + 3.4 + 4.5 + . . . + 98.99 + 99.100

A : 2 = 4950 + 333300

A = 676500

đặng viết thái
16 tháng 1 2017 lúc 12:40

676500

là câu trả lời của mình

Bích Thảo Nguyễn
Xem chi tiết
Vũ Anh Tú
Xem chi tiết
6a01dd_nguyenphuonghoa.
Xem chi tiết
Nguyễn Ngọc Anh Minh
20 tháng 7 2023 lúc 9:27

a/

\(b=\dfrac{1}{1.3}+\dfrac{1}{3.5}+\dfrac{1}{5.7}+...+\dfrac{1}{97.99}\)

\(2b=\dfrac{3-1}{1.3}+\dfrac{5-3}{3.5}+\dfrac{7-5}{5.7}+...+\dfrac{99-97}{97.99}=\)

\(=1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{97}-\dfrac{1}{99}=\)

\(=1-\dfrac{1}{99}=\dfrac{98}{99}\Rightarrow b=\dfrac{98}{2.99}=\dfrac{49}{99}\)

b/

\(c=\dfrac{3-1}{1.2.3}+\dfrac{4-2}{2.3.4}+\dfrac{5-3}{3.4.5}+...+\dfrac{100-98}{98.99.100}=\)

\(=\dfrac{1}{1.2}-\dfrac{1}{2.3}+\dfrac{1}{2.3}-\dfrac{1}{3.4}+\dfrac{1}{3.4}-\dfrac{1}{4.5}+\dfrac{1}{98.99}-\dfrac{1}{99.100}=\)

\(=\dfrac{1}{2}-\dfrac{1}{99.100}\)

c/

\(\dfrac{2}{5}.d=\dfrac{4-2}{2.3.4}+\dfrac{5-3}{3.4.5}+...+\dfrac{100-98}{98.99.100}+\dfrac{101-99}{99.100.101}=\)

\(=\dfrac{1}{2.3}-\dfrac{1}{3.4}+\dfrac{1}{3.4}-\dfrac{1}{4.5}+...+\dfrac{1}{98.99}-\dfrac{1}{99.100}+\dfrac{1}{99.100}-\dfrac{1}{100.101}=\)

\(=\dfrac{1}{2.3}-\dfrac{1}{100.101}\Rightarrow d=\left(\dfrac{1}{2.3}-\dfrac{1}{100.101}\right):\dfrac{2}{5}\)

minhanh
Xem chi tiết
Huỳnh Thị Hà Giang
Xem chi tiết
_Detective_
10 tháng 5 2016 lúc 18:09

\(S=\frac{5}{2}.\left(\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{99.100}-\frac{1}{100.101}\right)\)

\(S=\frac{5}{2}.\left(\frac{1}{2.3}-\frac{1}{100.101}\right)\)

\(S=\frac{5}{2}.\left(\frac{5047}{30300}\right)\Rightarrow S=\frac{5047}{12120}\)