\(CMR:1+\frac{1}{2^2}+\frac{1}{3^2}+......+\frac{1}{100^2}\)KHÔNG PHẢI LÀ SỐ TỰ NHIÊN
CMR: \(A=\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}\) không phải là số tự nhiên
bạn ơi bài này có trong bùi văn tuyên
\(A=\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+....+\frac{1}{100}< 1\)
\(A=\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+....+\frac{1}{100}< \frac{1}{1.2}+\frac{1}{2.3}+....+\frac{1}{99.100}\)
\(A< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+.....+\frac{1}{99}-\frac{1}{100}\)
\(A< 1-\frac{1}{100}\)
\(A< \frac{99}{100}< 1\)
\(\Rightarrow A=\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+....+\frac{1}{99}+\frac{1}{100}\text{ ko phải là 1 số tự nhiên ( đpcm )}\)
CMR
\(1+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}\)
không phải là 1 số tự nhiên n thuộc N*
\(1< \frac{1}{1}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}< 1+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{\left(n-1\right).n}\)
\(1< 1+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}< 1+1-\frac{1}{n}< 2\)
Vậy ..
Bài 1;Cho S = \(\frac{1}{1!}+\frac{1}{2!}+\frac{1}{3!}+.....................+\frac{1}{2012!}\)CMR: S <2
Bài 2:CMR \(\frac{9}{10!}+\frac{10}{11!}+\frac{11}{12!}+...........+\frac{99}{100!}<\frac{1}{9!}\)
Bài 3: Cho E= \(1+\frac{1}{2}+\frac{1}{3}+...........+\frac{1}{20}\)CMR: E không phải là số tự nhiên
Chứng minh rằng A không phải là số tự nhiên
A= \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+......+\frac{1}{100^2}\)
Ta có: \(\frac{1}{2^2}>0\)
\(\frac{1}{3^2}>0\)
................
\(\frac{1}{100^2}>0\)
\(\Rightarrow A>0\left(1\right)\)
Ta có: \(\frac{1}{2^2}< \frac{1}{1.2}\)
\(\frac{1}{3^2}< \frac{1}{2.3}\)
...................
\(\frac{1}{100^2}< \frac{1}{99.100}\)
\(\Rightarrow A< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\)
\(\Rightarrow A< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)
\(\Rightarrow A< 1-\frac{1}{100}< 1\)
\(\Rightarrow A< 1\left(2\right)\)
Từ (1) và (2) \(\Rightarrow0< A< 1\)
Vậy A ko là STN.
Ta có: \(\frac{1}{2^2}< \frac{1}{1.2}\)
\(\frac{1}{3^2}< \frac{1}{2.3}\)
\(\frac{1}{4^2}< \frac{1}{3.4}\)
...
\(\frac{1}{100^2}< \frac{1}{99.100}\)
\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(=1-\frac{1}{100}\)
\(=\frac{99}{100}< 1\)
Vậy A không phải là một số tự nhiên
CMR \(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\)không là số tự nhiên.
bn chỉ cần tính kết quả là được vì nó là phân số ko phải số tự nhiên hihi 66366377377272
mẫu chung: 2^6.3.5.7...99
gọi tổng đó là A
A=1+1/2+1/3+...+1/100
A=k1+k2+k3+...+k100/2^6.3.5.7.9...100
ta thấy phân so k^64/64 sẽ bằng có tử bằng: 3.5.7...99. mà các phân số khác có tử đều chẵn (vì các phân số lẻ đều có tử có thừa số 2^6, phân số chẵn sẽ có ít nhất 1 thừa số 2)
=> tử của A lẻ nên ko chia hết cho 2. mà mẫu A=2^6.3.5.7...99 chia hết 2
=> A ko phải số tự nhiên
chị trình bày còn lủng củng. em hiểu rồi trình bày lại nhé
cho A=\(\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+....+\frac{1}{\sqrt{n^2}}\)
với n thuộc N , n>=2
cmr; A không phải là số tự nhiên
CMR: với mọi số tự nhiên \(n\ge2\), tổng :
\(S=\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}\)không thể là số tự nhiên
CMR :A không thể là số tự nhiên
\(\frac{1}{2}-\frac{1}{2^2}+\frac{1}{2^3}-\frac{1}{2^4}+....+\frac{1}{2^{2017}}\)
A = 1/2 - 1/2^2 + 1/2^3 - 1/2^4 + ... + 1/2^2017
2A = 1 - 1/2 + 1/2^2 - 1/2^3 + .... + 1/2^2016
2A + A = 1 + 1/2^2017
=> A = (1 + 1/2^2017) : 3
CMR: với mọi số tự nhiên \(n\ge2\), tổng:
\(S=\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}\) không thể là số tự nhiên