Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lê Thành Đạt
Xem chi tiết
Huy Trần Lê Quốc
30 tháng 11 2014 lúc 20:48

$\frac{\frac{2010}{2011}}{\frac{2012}{2013}}+\frac{\frac{2011}{2012}}{\frac{2013}{2014}}+\frac{\frac{2012}{2013}}{\frac{2014}{2015}}$

$\frac{\frac{2010}{2011}}{\frac{2012}{2013}}+\frac{\frac{2011}{2012}}{\frac{2013}{2014}}+\frac{\frac{2012}{2013}}{\frac{2014}{2015}}$

$\frac{\frac{2010+2011+2012}{2011+2012+2013}}{\frac{2012+2013+2014}{2013+2014+2015}}$

$\frac{\frac{2010}{2011}+\frac{2011}{2012}+\frac{2012}{2013}}{\frac{2012+2013+2014}{2013+2014+2015}}$

$\frac{\frac{2010+2011+2012}{2011+2012+2013}}{\frac{2012}{2013}+\frac{2013}{2014}+\frac{2014}{2015}}$

Đặng Hà Trang
28 tháng 2 2015 lúc 20:25

dễ ợt nhưng éo biết làm thông cảm nha

 

Pham Quynh Trang
15 tháng 5 2015 lúc 21:23

ban Dang Ha Trang an noi gi ki vay 

 

Phương Anh
Xem chi tiết
Pham Nghia
Xem chi tiết
Lê Thành Đạt
Xem chi tiết
Nguyễn Thị Lê Mi
Xem chi tiết
kudo shinichi
20 tháng 7 2018 lúc 21:17

\(\frac{2014}{2013}+\frac{2013}{2012}+\frac{2012}{2011}+\frac{2011}{2014}\)

\(=1+\frac{1}{2013}+1+\frac{1}{2012}+1+\frac{1}{2011}+1-\frac{3}{2014}\)

\(=4+\left(\frac{1}{2013}+\frac{1}{2012}+\frac{1}{2011}-\frac{1}{2014}-\frac{1}{2014}-\frac{1}{2014}\right)\)

Ta có:

 \(\frac{1}{2011}>\frac{1}{2014}\Rightarrow\frac{1}{2011}-\frac{1}{2014}>0\)

\(\frac{1}{2012}>\frac{1}{2014}\Rightarrow\frac{1}{2012}-\frac{1}{2014}>0\)

\(\frac{1}{2013}>\frac{1}{2014}\Rightarrow\frac{1}{2013}-\frac{1}{2014}>0\)

\(\Rightarrow\frac{1}{2011}-\frac{1}{2014}+\frac{1}{2012}-\frac{1}{2014}+\frac{1}{2013}-\frac{1}{2014}>0\)

\(\Rightarrow4+\left(\frac{1}{2013}+\frac{1}{2012}+\frac{1}{2011}-\frac{1}{2014}-\frac{1}{2014}-\frac{1}{2014}\right)>4\)( thêm 2 vế với 4 )

\(\Rightarrow\frac{2014}{2013}+\frac{2013}{2012}+\frac{2012}{2011}+\frac{2011}{2014}>4\)

Vậy \(\frac{2014}{2013}+\frac{2013}{2012}+\frac{2012}{2011}+\frac{2011}{2014}>4\) 

Tham khảo nhé~

Hoang Quoc Khanh
20 tháng 7 2018 lúc 21:18

Mỗi số hạng của tổng đều nhỏ hơn 1 => Tổng đó nhỏ hơn 4

Đen đủi mất cái nik
20 tháng 7 2018 lúc 21:33

Ta có:

\(\frac{2014}{2013}+\frac{2013}{2012}+\frac{2012}{2011}+\frac{2011}{2014}=4+\frac{1}{2013}+\frac{1}{2012}+\frac{1}{2011}-\frac{3}{2014}\)

\(\frac{1}{2013}>\frac{1}{2014},\frac{1}{2012}>\frac{1}{2014},\frac{1}{2011}>\frac{1}{2014}\)

=>\(\frac{1}{2013}+\frac{1}{2012}+\frac{1}{2011}>\frac{3}{2014}\)

=>\(\frac{1}{2013}+\frac{1}{2012}+\frac{1}{2011}-\frac{3}{2014}>0\)

=>\(4+\frac{1}{2013}+\frac{1}{2012}+\frac{1}{2011}-\frac{3}{2014}>4\)

Ngọc Lục Bảo
Xem chi tiết
Michiel Girl mít ướt
3 tháng 9 2015 lúc 22:14

\(A=\left(1-\frac{1}{2011}\right)-\left(1-\frac{1}{2012}\right)+\left(1-\frac{1}{2013}\right)-\left(1-\frac{1}{2014}\right)\)

\(=1-\frac{1}{2011}-1+\frac{1}{2012}+1-\frac{1}{2013}-1+\frac{1}{2014}\)

\(=\left(1-1+1-1\right)-\left(\frac{1}{2011}+\frac{1}{2012}-\frac{1}{2013}+\frac{1}{2014}\right)\)

 

còn lại bó tay @@ 

Michiel Girl mít ướt
3 tháng 9 2015 lúc 22:08

\(A=\frac{2010}{2011}-\frac{2011}{2012}+\frac{2012}{2013}-\frac{2013}{2014}\)

và 

\(B=\frac{1}{2010.2011}-\frac{1}{2012.2013}\)

 

Trần Nguyên Chương
Xem chi tiết
Trần Tuấn Anh
18 tháng 6 2018 lúc 8:53

ta có 3=1+1+1

vì 2011/2012<1; 2012/2013<1; 2013/2014<1 nên 2011/2012+2012/2013+2013/2014<1+1+1=3

nguễn thúy minh
Xem chi tiết
Huỳnh Thị Minh Huyền
12 tháng 8 2018 lúc 10:25

\(\frac{2011}{2010}\times\frac{2012}{2011}\times\frac{2013}{2012}\times\frac{2014}{2013}\times\frac{1005}{1007}\)

\(=\frac{2014}{2010}\times\frac{1005}{1007}\)

\(=\frac{2\times1007\times1005}{2\times1005\times1007}\)

\(=1\)

Ninh
12 tháng 8 2018 lúc 10:28

\(\frac{2011}{2010}\cdot\frac{2012}{2011}\cdot\frac{2013}{2012}\cdot\frac{2014}{2013}\cdot\frac{2010}{2014}\)

\(=\frac{2010\cdot2011\cdot2012\cdot2013\cdot2014}{2010\cdot2011\cdot2012\cdot2013\cdot2014}\)

= 1

Đức Anh 2k9
12 tháng 8 2018 lúc 10:28

\(\frac{2011}{2010}.\frac{2012}{2011}.\frac{2013}{2012}.\frac{2014}{2013}.\frac{1005}{1007}=\frac{2014}{2010}.\frac{1005}{1007}\)

\(\frac{2014}{2010}.\frac{1005}{1007}=\frac{1007}{1005}.\frac{1005}{1007}=1\)

Kousaka Honoka
Xem chi tiết
doraemon
9 tháng 8 2015 lúc 17:51

\(\frac{2009}{2010}