Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
NguyenHa ThaoLinh
Xem chi tiết
Trần Anh Tuấn
Xem chi tiết
NGỌC HÂN
Xem chi tiết
NguyenHa ThaoLinh
Xem chi tiết
Minh Nguyen
5 tháng 4 2020 lúc 14:15

1) \(ĐKXĐ:\hept{\begin{cases}x\ge0\\x\ne4\end{cases}}\)

\(P=\frac{2+\sqrt{x}}{2-\sqrt{x}}-\frac{2-\sqrt{x}}{2+\sqrt{x}}-\frac{4x}{x-4}\)

\(\Leftrightarrow P=\frac{\left(2+\sqrt{x}\right)^2-\left(2-\sqrt{x}\right)^2+4x}{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)}\)

\(\Leftrightarrow P=\frac{4+4\sqrt{x}+x-4+4\sqrt{x}-x+4x}{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)}\)

\(\Leftrightarrow P=\frac{4x+8\sqrt{x}}{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)}\)

\(\Leftrightarrow P=\frac{4\sqrt{x}}{2-\sqrt{x}}\)

2) Để \(P=2\)

\(\Leftrightarrow\frac{4\sqrt{x}}{2-\sqrt{x}}=2\)

\(\Leftrightarrow4\sqrt{x}=4-2\sqrt{x}\)

\(\Leftrightarrow6\sqrt{x}=4\)

\(\Leftrightarrow\sqrt{x}=\frac{2}{3}\)

\(\Leftrightarrow x=\frac{4}{9}\)

Vậy để \(P=2\Leftrightarrow x=\frac{4}{9}\)

3) Khi \(\left(\sqrt{x}-2\right)\left(2\sqrt{x}-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x}-2=0\\2\sqrt{x}-1==0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x}=2\\\sqrt{x}=\frac{1}{2}\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=4\left(ktm\right)\\x=\frac{1}{4}\left(tm\right)\end{cases}}\)

Thay \(x=\frac{1}{4}\)vào P, ta được :

\(\Leftrightarrow P=\frac{4\sqrt{\frac{1}{4}}}{2-\sqrt{\frac{1}{4}}}=\frac{4\cdot\frac{1}{2}}{2-\frac{1}{2}}=\frac{2}{\frac{3}{2}}=\frac{4}{3}\)

4) Để \(P=\frac{\sqrt{x}+3}{2\sqrt{x}-1}\)

\(\Leftrightarrow\frac{4\sqrt{x}}{2-\sqrt{x}}=\frac{\sqrt{x}+3}{2\sqrt{x}-1}\)

\(\Leftrightarrow8x-4\sqrt{x}=-x-\sqrt{x}+6\)

\(\Leftrightarrow9x-3\sqrt{x}-6=0\)

\(\Leftrightarrow3x-\sqrt{x}-2=0\)

\(\Leftrightarrow\sqrt{x}=3x-2\)

\(\Leftrightarrow x=9x^2-12x+4\)

\(\Leftrightarrow9x^2-13x+4=0\)

\(\Leftrightarrow\left(9x-4\right)\left(x-1\right)=0\)

\(\Leftrightarrow\hept{\begin{cases}9x-4=0\\x-1=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=\frac{4}{9}\\x=1\end{cases}}\)

Thử lại ta được kết quá : \(x=\frac{4}{9}\left(ktm\right)\)\(x=1\left(tm\right)\)

Vậy để \(P=\frac{\sqrt{x}+3}{2\sqrt{x}-1}\Leftrightarrow x=1\)

5) Để biểu thức nhận giá trị nguyên

\(\Leftrightarrow\frac{4\sqrt{x}}{2-\sqrt{x}}\inℤ\)

\(\Leftrightarrow4\sqrt{x}⋮2-\sqrt{x}\)

\(\Leftrightarrow-4\left(2-\sqrt{x}\right)+8⋮2-\sqrt{x}\)

\(\Leftrightarrow8⋮2-\sqrt{x}\)

\(\Leftrightarrow2-\sqrt{x}\inƯ\left(8\right)=\left\{\pm1;\pm2;\pm4;\pm8\right\}\)

\(\Leftrightarrow\sqrt{x}\in\left\{1;3;0;4;-2;6;-6;10\right\}\)

Ta loại các giá trị < 0

\(\Leftrightarrow\sqrt{x}\in\left\{1;3;0;4;6;10\right\}\)

\(\Leftrightarrow x\in\left\{1;9;0;16;36;100\right\}\)

Vậy để \(P\inℤ\Leftrightarrow x\in\left\{1;9;0;16;36;100\right\}\)

\(\)

Khách vãng lai đã xóa
Tô Hoài Dung
Xem chi tiết
Lufy Nguyễn
Xem chi tiết

\(\(A=\left(\frac{\sqrt{x}+2}{x+2\sqrt{x}+1}-\frac{\sqrt{x}-2}{x-1}\right):\frac{\sqrt{x}}{\sqrt{x}+1}\left(x\ge0;x\ne1\right)\)\)

\(\(=\left(\frac{\sqrt{x}+2}{\left(\sqrt{x}+1\right)^2}-\frac{\sqrt{x}-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right):\frac{\sqrt{x}}{\sqrt{x}+1}\)\)

\(\(=\frac{\left(\sqrt{x}-1\right).\left(\sqrt{x}+2\right)-\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}:\frac{\sqrt{x}}{\sqrt{x}+1}\)\)

\(\(=\frac{x+2\sqrt{x}-\sqrt{x}-2-\left(x+\sqrt{x}-2\sqrt{x}-2\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}:\frac{\sqrt{x}}{\sqrt{x}+1}\)\)

\(=\frac{x+2\sqrt{x}-\sqrt{x}-2-x-\sqrt{x}+2\sqrt{x}+2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}:\frac{\sqrt{x}}{\sqrt{x}+1}\)

\(=\frac{2\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}.\frac{\sqrt{x}+1}{\sqrt{x}}\)

\(=\frac{2}{x-1}\)

Vậy \(A=\frac{2}{x-1}vs\left(x\ge0;x\ne1\right)\)

_Ko chắc , đag bận nên còn phần b , tí mk giải nối_

_Minh ngụy_

💋Bevis💋
21 tháng 7 2019 lúc 10:08

\(ĐK:x\ge0;x\ne1\)

\(a,A=\left(\frac{\sqrt{x}+2}{x+2\sqrt{x}+1}-\frac{\sqrt{x}-2}{x-1}\right):\frac{\sqrt{x}}{\sqrt{x}+1}\)

\(=\left(\frac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)^2\left(\sqrt{x}-1\right)}-\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}\right):\frac{\sqrt{x}}{\sqrt{x}+1}\)

\(=\left(\frac{x-\sqrt{x}+2\sqrt{x}-2}{\left(\sqrt{x}+1\right)^2\left(\sqrt{x}-1\right)}-\frac{x+\sqrt{x}-2\sqrt{x}-2}{\left(\sqrt{x}+1\right)^2\left(\sqrt{x}-1\right)}\right):\frac{\sqrt{x}}{\sqrt{x}+1}\)

\(=\frac{x-\sqrt{x}+2\sqrt{x}-2-x-\sqrt{x}+2\sqrt{x}+2}{\left(\sqrt{x}+1\right)^2\left(\sqrt{x}-1\right)}.\frac{\sqrt{x}+1}{\sqrt{x}}\)

\(=\frac{2\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)^2\left(\sqrt{x}-1\right)\sqrt{x}}\)

\(=\frac{2}{x-1}\)

Vậy với \(x\ge0;x\ne1\)thì \(A=\frac{2}{x-1}\)

\(b,\)Ta có:\(A=\frac{2}{x-1}\)

Để A nhận giá trị nguyên \(\Leftrightarrow2⋮x-1\)

Vì \(x\in Z\Rightarrow x-1\inƯ_{\left(2\right)}=\left\{\pm1;\pm2\right\}\)

Ta có bảng sau:

\(x-1\)\(1\)\(-1\)\(2\)\(-2\)
\(x\)\(2\left(TM\right)\)\(0\left(TM\right)\)\(3\left(TM\right)\)\(-1\left(L\right)\)

Vậy để A nhận giá trị nguyên \(x\in\left\{2;0;3\right\}\)

ô, tôi nhớ là đã sửa kết quả thành \(\frac{2}{x-1}\)và chỗ sai dấu từ 30 mấy phút trc mà sao ở đây vẫn chưa đổi??

b) Ta có :\(A=\frac{2}{x-1}\)

_____-Làm tiếp như " bạn j có cái tên ngược là đc_____

_Minh ngụy_

Thanh Nguyễn
Xem chi tiết
jungkook
Xem chi tiết
Bin Mèo
Xem chi tiết