giải hệ pt sau
\(\hept{\begin{cases}x+xy+y=5\\x^2+y^2=5\end{cases}}\)
Giải các hệ pt sau:
a/\(\hept{\begin{cases}x^4+xy-\frac{2}{y}=5\\y^4+xy-\frac{2}{x}=5\end{cases}}\)
a) giải hệ pt: \(\hept{\begin{cases}2x^2-y^2+xy-5x+y+2=\sqrt{y-2x+1}-\sqrt{3-3x}\\x^2-y-1=\sqrt{4x+y+5}-\sqrt{x+2y-2}\end{cases}}\)
b) giải hệ pt: \(\hept{\begin{cases}x^2+y^2=5\\x^3+2y^3=10x-10y\end{cases}}\)
a) \(ĐK:y-2x+1\ge0;4x+y+5\ge0;x+2y-2\ge0,x\le1\)
Th1: \(\hept{\begin{cases}y-2x+1=0\\3-3x=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=1\end{cases}}\Leftrightarrow\hept{\begin{cases}0=0\\-1=\sqrt{10}-1\end{cases}}\)(không thỏa mãn)
Th2: \(x,y\ne1\)
\(2x^2-y^2+xy-5x+y+2=\sqrt{y-2x+1}-\sqrt{3-3x}\)\(\Leftrightarrow\left(x+y-2\right)\left(2x-y-1\right)=\frac{x+y-2}{\sqrt{y-2x+1}+\sqrt{3-3x}}\)\(\Leftrightarrow\left(x+y-2\right)\left(\frac{1}{\sqrt{y-2x+1}+\sqrt{3-3x}}+y-2x+1\right)=0\)
Dễ thấy \(\frac{1}{\sqrt{y-2x+1}+\sqrt{3-3x}}+y-2x+1>0\)nên x + y - 2 = 0
Thay y = 2 - x vào phương trình \(x^2-y-1=\sqrt{4x+y+5}-\sqrt{x+2y-2}\), ta được: \(x^2+x-3=\sqrt{3x+7}-\sqrt{2-x}\)\(\Leftrightarrow x^2+x-2=\sqrt{3x+7}-1+2-\sqrt{2-x}\)\(\Leftrightarrow\left(x+2\right)\left(x-1\right)=\frac{3\left(x+2\right)}{\sqrt{3x+7}+1}+\frac{x+2}{2+\sqrt{2-x}}\)\(\Leftrightarrow\left(x+2\right)\left(\frac{3}{\sqrt{3x+7}+1}+\frac{1}{2+\sqrt{2-x}}+1-x\right)=0\)
Vì \(x\le1\)nên\(\frac{3}{\sqrt{3x+7}+1}+\frac{1}{2+\sqrt{2-x}}+1-x>0\)suy ra x = -2 nên y = 4
Vậy nghiệm của hệ phương trình là (x;y) = (-2;4)
b) \(\hept{\begin{cases}x^2+y^2=5\\x^3+2y^3=10x-10y\end{cases}}\Leftrightarrow\hept{\begin{cases}2\left(x^2+y^2\right)=10\left(1\right)\\x^3+2y^3=10\left(x-y\right)\left(2\right)\end{cases}}\)
Thay (1) vào (2), ta được: \(x^3+2y^3=2\left(x^2+y^2\right)\left(x-y\right)\Leftrightarrow\left(2y-x\right)\left(x^2+2y^2\right)=0\)
* Th1: \(x^2+2y^2=0\)(*)
Mà \(x^2\ge0\forall x;2y^2\ge0\forall y\Rightarrow x^2+2y^2\ge0\)nên (*) xảy ra khi x = y = 0 nhưng cặp nghiệm này không thỏa mãn hệ
* Th2: 2y - x = 0 suy ra x = 2y thay vào (1), ta được: \(y^2=1\Rightarrow y=\pm1\Rightarrow x=\pm2\)
Vậy hệ có 2 nghiệm \(\left(x,y\right)\in\left\{\left(2;1\right);\left(-2;-1\right)\right\}\)
giải hệ PT sau :
\(\hept{\begin{cases}x+3y-5=xy\\\frac{1}{x-1}+\frac{1}{y-2}=2\end{cases}}\)
\(\hept{\begin{cases}x+3y-5=xy\\\frac{1}{x-1}+\frac{1}{y-2}=2\end{cases}}\)
\(\hept{\begin{cases}3y-2=xy\\\frac{1}{x-1}+\frac{1}{y-2}=2\end{cases}}\)
\(\hept{\begin{cases}\frac{3y-2}{y}=x\\\frac{1}{x-1}+\frac{1}{y-2}=2\end{cases}}\)
Ta thay \(\frac{3y-2}{y}\)vào biểu thức \(\frac{1}{x-1}+\frac{1}{y-2}\)ta đc
\(\frac{1}{\frac{3y-2}{y}-1}+\frac{1}{y-2}=2\)
\(y-3+\frac{3y-2}{y}=4y-\frac{4\left(3y-2\right)}{y}\)
\(y^2-2=4y^2-12y+8\)
\(y^2-2-4y^2+12y-8=0\)
\(-3y^2-10+12y=0\)
\(y=\orbr{\begin{cases}\frac{6-\sqrt{6}}{3}\\\frac{6+\sqrt{6}}{3}\end{cases}}\)
Tự thay y vào mà tính x , mà nếu như AD giải hpt ở lp 8 thì ta cho lak vô nghiệm đều đc ( vì số vô tỉ => vô nghiệm nha )
giải hệ pt \(\hept{\begin{cases}x^2-y^2+x-y=5\\x^3-x^2y-xy^2+y^3=6\end{cases}}\)
\(x^2-y^2+x-y=5\)\(\Leftrightarrow\left(x^2-y^2\right)+\left(x-y\right)=5\)
\(\Leftrightarrow\left(x-y\right)\left(x+y\right)+\left(x-y\right)=5\)
\(\Leftrightarrow\left(x-y\right)\left(x-y+1\right)=5\)
\(x^3-x^2y-xy^2+y^3=6\)
\(\Leftrightarrow\left(x^3+y^3\right)-\left(x^2y+xy^2\right)=6\)
\(\Leftrightarrow\left(x+y\right)\left(x^2-xy+y^2\right)-xy\left(x+y\right)=6\)
\(\Leftrightarrow\left(x+y\right)\left(x^2-xy+y^2-xy\right)=6\)
\(\Leftrightarrow\left(x+y\right)\left(x^2-2xy+y^2\right)=6\)
\(\Leftrightarrow\left(x+y\right)\left(x-y\right)^2=6\)
6x3−x2y−xy2+y3=6
\Leftrightarrow\left(x^3+y^3\right)-\left(x^2y+xy^2\right)=6⇔(x3+y3)−(x2y+xy2)=6
\Leftrightarrow\left(x+y\right)\left(x^2-xy+y^2\right)-xy\left(x+y\right)=6⇔(x+y)(x2−xy+y2)−xy(x+y)=6
\Leftrightarrow\left(x+y\right)\left(x^2-xy+y^2-xy\right)=6⇔(x+y)(x2−xy+y2−xy)=6
\Leftrightarrow\left(x+y\right)\left(x^2-2xy+y^2\right)=6⇔(x+y)(x2−2xy+y2)=6
\Leftrightarrow\left(x+y\right)\left(x-y\right)^2=6⇔(x+y)(x−y)2=6
Giải hệ pt:
a)\(\hept{\begin{cases}x+3y-xy=3\\x^2_{ }+y^2+xy=3\end{cases}}\)
b)\(\hept{\begin{cases}x^2-xy+y^2=1\\x^2+2xy-y^2-3x-y=-2\end{cases}}\)
c)\(\hept{\begin{cases}x^2+y^2=2x^2y^2\\\left(x+y\right)\left(1+xy\right)=4x^2y^2\end{cases}}\)
d)\(\hept{\begin{cases}x^2-xy+y^2=1\\x^2+xy+2y^2=4\end{cases}}\)
giải 2 hệ PT sau :
\(\hept{\begin{cases}x+y=7\\xy=12\end{cases}}\)
\(\hept{\begin{cases}x+y=90\\\frac{10}{x}-\frac{10}{y}=\frac{1}{20}\end{cases}}\)
GIẢI HỆ PT: 1) \(\hept{\begin{cases}x^2-y^2=4x-2y-3\\x^2+y^2=5\end{cases}}\)
2) \(\hept{\begin{cases}xy+x+y=x^2-2y^2\\-x^2+2y=-3\end{cases}}\)
c)
x2 - x - 6 = x2 +2x - 3x - 6
= x(x + 2) - 3(x + 2)
= (x + 2)(x - 3)
d)
x4 + 4 = x4 + 4x2 + 4 - 4x2
= (x2 + 2)2 - (2x)2
= (x2 + 2 - 2x)(x2 + 2 + 2x
Giải hệ phương trình:
a)\(\hept{\begin{cases}^{x^2+y^2-xy=19}\\x+y+xy=-7\end{cases}}\)
b) \(\hept{\begin{cases}x^3+y^3=1\\x^5+y^5=x^2+y^2\end{cases}}\)
\(Giải\)
\(\hept{\begin{cases}x^2+y^2-xy=19\\x+y+xy=-7\end{cases}}\Leftrightarrow x^2+y^2+x+y=12\)
\(\Leftrightarrow x^2+2xy+y^2+3x+3y=-2\Leftrightarrow\left(x+y+3\right)\left(x+y\right)=-2\)
\(\Leftrightarrow\left(x+y+3\right)\left(x+y\right)=-2.1\Leftrightarrow x+y=-2\)
\(\Rightarrow xy=-5\Rightarrow\left(x-y\right)^2=24\Rightarrow x-y=\sqrt{24}......\)
Giải các hệ phương trình sau:
a) \(\hept{\begin{cases}x^3+x^3y^3+y^3=17\\x+y+xy=5\end{cases}}\)
b) \(\hept{\begin{cases}x^4+x^2y^2+y^4=481\\x^2+xy+y^2=37\end{cases}}\)
Câu dễ làm trước !
b) \(\hept{\begin{cases}x^4+x^2y^2+y^4=481\\x^2+xy+y^2=37\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\left(x^2+y^2\right)-x^2y^2=481\\x^2+xy+y^2=37\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\left(x^2-xy+y^2\right)=13\\x^2+xy+y^2=37\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}xy=12\\x^2+y^2=25\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}\left(x^2+2xy+y^2\right)-xy=37\\\left(x^2-2xy+y^2\right)+xy=13\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\left(x+y\right)^2=49\\\left(x-y\right)^2=1\end{cases}}\) (thay xy=12)
\(\Leftrightarrow\hept{\begin{cases}x=4\\y=3\end{cases}}\) hoặc \(\hept{\begin{cases}x=-4\\y=-3\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}\hept{\begin{cases}x+y=7\\x-y=1\end{cases}}\\\hept{\begin{cases}x+y=-7\\x-y=-1\end{cases}}\end{cases}}\)
thanks you♥