Cho A =\(\frac{n+1}{n-2}\)
a) Tìm n\(\varepsilon\)\(ℤ\)để A là số nguyên.
b) Tìm n\(\varepsilon\)\(ℤ\)để A có có GTLN.
Cho A=\(\frac{6n-1}{3n+2}\)
a) Tìm n\(\varepsilon\)\(ℤ\)đề A có giá trị nguyên.
b) Tìm n\(\varepsilon\)\(ℤ\)để A cso GTNN.
a)\(A=3-\frac{4}{3n+2}\)=>\(3n+2\)là ước của 4 =>\(n=0;n=-1;n=-2\)
cho p/s A=\(\frac{4n+1}{2n+3}\)
a)tìm n \(\varepsilon\)\(ℤ\)để A nhận giá trị nguyên
b)tìm n \(\varepsilon\)để A là p/s tối giản
a) ta có: \(A=\frac{4n+1}{2n+3}=\frac{4n+6-5}{2n+3}=\frac{2.\left(2n+3\right)-5}{2n+3}=2-\frac{5}{2n+3}\)
Để A nhận giá trị nguyên
=> 5/2n+3 thuộc Z
=> 5 chia hết cho 2n+3
=> 2n+3 thuộc Ư(5)={1;-1;5;-5}
nếu 2n+3 = 1 => 2n = -2 => n = -1 (TM)
2n+3 = -1 => 2n = -4 => n = -2 (TM)
2n+3 = 5 => 2n = 2 => n = 1 (TM)
2n+3 = -5 => 2n = 8 => n = -4 (TM)
KL:...
b) tìm n thuộc Z để A là phân số tối giản
Để A là phân số tối giản
\(\Rightarrow n\notin\left\{-1;-2;1;-4\right\}\)
a) Để A nhận giá trị nguyên thì 4n+1 phải chia hết cho 2n+3
\(\Rightarrow4n+1⋮2n+3\)(1)
Lại có:\(\left(2n+3\right)\times2⋮2n+3\)
\(\Rightarrow4n+6⋮2n+3\)(2)
Từ (1) và (2) suy ra:
\(\left(4n+6\right)-\left(4n+1\right)⋮2n+3\)
\(\Rightarrow4n+6-4n-1⋮2n+3\)
\(\Rightarrow\left(4n-4n\right)+\left(6-1\right)⋮2n+3\)
\(\Rightarrow5⋮2n+3\)
\(\Rightarrow2n+3\inƯ\left(5\right)\)
mà Ư(5)=(-5;-1;1;5)
\(\Rightarrow2n+3\in\left(-5;-1;1;5\right)\)
\(\Rightarrow2n\in\left(-8;-4;4;8\right)\)
\(\Rightarrow n\in\left(-4;-2;2;4\right)\)
Vậy với \(n\in\left(-4;-2;2;4\right)\)
\(\text{a) Cho P = x3 + 6x2 + 12x + a và Q = x + 2 Hãy tìm a để đa thức P chia hết cho đa thức Q? b) Tìm n \varepsilon ℤ để 2n^2 - n + 2 chia hết cho đa thức Q}\)
Cho n \(\varepsilon\)\(ℕ^∗\). Tìm n đê A \(\varepsilon\)\(ℤ\)
A = \(\frac{n+8}{2n-5}\)
Để \(A\in Z\Leftrightarrow\left(n+8\right)⋮\left(2n-5\right)\)
Giả sử\(\left(n+8\right)⋮\left(2n-5\right)\)
\(\Leftrightarrow2\left(n+8\right)⋮\left(2n-5\right)\)
\(\Leftrightarrow2n+16⋮\left(2n-5\right)\)
\(\Leftrightarrow2n-5+21⋮\left(2n-5\right)\)
Do \(2n-5⋮2n-5\)
\(\Rightarrow21⋮\left(2n-5\right)\)
\(\Rightarrow\left(2n-5\right)\inƯ\left(21\right)\)
Ta có bảng sau:
2n-5 | -21 | -7 | -3 | -1 | 1 | 3 | 7 | 21 |
2n | -16 | -2 | 2 | 4 | 6 | 8 | 12 | 26 |
n | -8 | -1 | 1 | 2 | 3 | 4 | 6 | 13 |
Do \(n\inℕ^∗\Rightarrow n\in\left\{1;2;3;4;6;13\right\}\)
Cho phân số: A=\(\frac{6n-1}{3n+2}\)
a) Tìm n \(\varepsilon\)Z để A \(\varepsilon\)Z
b) Tìm n \(\varepsilon\)Z để A có GTNN
Phần a dễ , tớ làm sau.Để tớ chơi phần b {}
Phàn a) dễ oy , tự lm nhé !
b) Ta có : \(A=\frac{6n-1}{3n+2}=\frac{2\left(3n+2\right)-5}{3n+2}=2-\frac{5}{3n+2}\)
Để \(A_{min}\Leftrightarrow\frac{5}{3n+2}max\)
Xét 3n+2>0 =>3n>-2=>n>\(\frac{-2}{3}\)=> n >hoặc = 0(vì n \(\in\)Z )=>\(\frac{5}{3n+2}\)>0 (1)
Xét 3n+2<0 => 3n<-2 =>n<\(\frac{-2}{3}\)=>\(\frac{5}{3n+2}\)<0 (2)
từ (1) và (2) và do \(\frac{5}{3n+2}\)max => ta chọn trường hợp (1)
p/s \(\frac{5}{3n+2}\)dương có tử số dương ko đổi nên A bé nhất khi mẫu số bé nhất \(\Leftrightarrow\)n nhỏ nhất \(\Leftrightarrow\)n=0
Vậy \(A_{min}=\frac{-1}{2}\Leftrightarrow n=0\)
Cho A = n + 5 n + 4 với n ∈ ℤ .
a) Tìm điều kiện của số nguyên n để A là phân số.
b) Tính giá trị của của phân số A khi n = 1; n = -1
c) Tìm số nguyên n để phân số A có giá trị là số nguyên.
Cho phân số: P=\(\frac{3n+5}{6n}\)(n \(\varepsilon\)N*)
a) Viết P dưới dạng tổng 2 phân số cùng mẫu
b) Tìm n để P đạt GTLN
c) Tìm n để \(P\varepsilon N\)
Hãy ra bài tập tương tự như bài tập trên và tự giải
Cho \(A=\frac{2n+9}{n-3}\)(n \(\varepsilon\) z ;n + 3)
a) Tìm n để A có giá trị là số nguyên.
b) Tìm n \(\varepsilon\) z để A có giá trị lớn nhất.
Tìm giá trị lớn nhất đó.
CHO A=\(\frac{n+5}{2\times n+3}\left(n\varepsilon Z\right)\)
TÌM n ĐỂ A CÓ GIÁ TRỊ LÀ MỘT SỐ NGUYÊN DƯƠNG