hay so sanh m voi 1
M=\(\frac{1}{2!}+\frac{2}{3!}++......+\frac{9}{10!}\)
Cho M=\(\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{10^2}\).Hay so sanh M voi \(1\frac{1}{3}\)
\(M=\frac{1}{2}-\frac{1}{2^4}+\frac{1}{2^7}-\frac{1}{2^{10}}+......+\frac{1}{2^{\text{49}}}-\frac{1}{2^{52}}\)
so sanh m voi 9/4
nhờ giải đầy đủ nha ai làm đc mình tick cho\
cho
A=(\(\frac{1}{2^2}\)-1).(\(\frac{1}{3^2}\)-1)....(\(\frac{1}{10^2}\)-1) hay so sanh A voi -1/2
\(A=\left(\frac{1}{2^2}-1\right).\left(\frac{1}{3^2}-1\right)......\left(\frac{1}{10^2}-1\right)=\left(-\frac{3}{4}\right).\left(-\frac{8}{9}\right)......\left(-\frac{99}{100}\right)\)
\(A=\frac{\left(-3\right).\left(-8\right).....\left(-99\right)}{4.9........100}=\frac{\left(-1\right).3.\left(-2\right).4....\left(-9\right).11}{2.2.3.3.....10.10}=\frac{\left[\left(-1.-2.-3....-9\right).\left(3.4...11\right)\right]}{\left(2.3.....10\right).\left(2.3...10\right)}\)
\(A=\frac{\left(-1\right).11}{10.2}=\frac{-11}{20}< \frac{-10}{20}=\frac{-1}{2}\)
Suy ra \(A< -\frac{1}{2}\)
A=\(\left(\frac{1}{2}-1\right).\left(\frac{1}{3}-1\right)...\left(\frac{1}{10}-1\right)\)
So sanh A voi \(-\frac{1}{9}\)
-A =( 1- 1/2 )(1 -1/3).....(1 -1/10)
= 1/2 . 2/3 ..... 9/10
= 1/10
-A = 1/10 nên A = -1/10
Vì 1/10 < 1/9 nên -1/10 > -1/9
Vậy A > -1/9
\(A=\left(\frac{1}{2}-1\right).\left(\frac{1}{3}-1\right)...\left(\frac{1}{10}-1\right)=-\frac{1}{2}.-\frac{2}{3}...-\frac{9}{10}\)
\(=\frac{-\left(1.2...9\right)}{2.3...10}=\frac{-1}{10}\)
A=\(\frac{455}{1}+\frac{454}{2}+....+\frac{2}{454}+\frac{1}{455}\)
hay so sanh A voi 2018
Cho M=\(\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+.....+\frac{1}{\sqrt{100}}\)So sanh M voi 10 ta duoc
So sanh S=\(\frac{1}{5}+\frac{1}{9}+\frac{1}{10}+\frac{1}{40}+\frac{1}{42}voi\frac{1}{2}\)
minh can cach lam
ai nhanh minh tick
Nhận xét: \(\frac{1}{5}< \frac{1}{42};\frac{1}{9}< \frac{1}{42};\frac{1}{10}< \frac{1}{42};\frac{1}{40}< \frac{1}{42}\)
\(\Rightarrow S< \frac{1}{42}+\frac{1}{42}+\frac{1}{42}+\frac{1}{42}+\frac{1}{42}\)
\(\Rightarrow S< \frac{5}{42}< \frac{21}{42}=\frac{1}{2}\)
Vậy S < 1/2
1/5+1/9+1/10+1/40+1/42=1159/2520
1159/2520=0.4599.....
1/2=0.5
Mà:0.5>0.4599
Nên:1/5+1/9+1/10+1/40+1/42>1/2
so sanh: A= \(\frac{3^{10}+1}{3^9+1}\) voi B=\(\frac{3^9+1}{3^8+1}\)
\(A=\frac{3^{10}+1}{3^9+1}=\frac{3^{10}+3-2}{3^9+1}=\frac{3\left(3^9+1\right)-2}{3^9+1}=3-\frac{2}{3^9+1}\)
\(B=\frac{3^9+1}{3^8+1}=\frac{3^9+3-2}{3^8+1}=\frac{3\left(3^8+1\right)-2}{3^8+1}=3-\frac{2}{3^8+1}\)
Có \(3^9+1>3^8+1\)
\(\Rightarrow\frac{2}{3^9+1}< \frac{2}{3^8+1}\)
\(\Rightarrow3-\frac{2}{3^9+1}>3-\frac{2}{3^8+1}\)
\(\Rightarrow A>B\)
\(P=\left(\frac{1}{2^2}-1\right).\left(\frac{1}{3^2}-1\right).\left(\frac{1}{4^2}-1\right)...\left(\frac{1}{9^2}-1\right)\)
so sanh P voi 1/2