So sánh A=1/2(1/6+1/24+1/60+...........+1/9240) và 57/462
A= 1/2 ( 1/6+1/24+1/60+....+ 1/9240) > 57/462
cmr: A= 1/2.(1/6+1/24+1/60+...+1/9240)>57/462
Chứng minh rằng A=1/2(1/6+1/24+1/60+....+1/9240)>57/462
chứng minh rằng : A=1/2.(1/6+1/24+1/60+...+1/9240)>57/462
Chứng minh rằng : A=1/2.(1/6+1/24+1/60+...+1/9240)>57/462
CMR:A=1/2.(1/6+1/24+1/60+........+1/9240)>57/462
chung minh rang a=1/2.(1/6+1/24+1/60+...+1/9240)>57/462
So sánh A=\(\frac{1}{2}+\frac{1}{6}+\frac{1}{24}+...+\frac{1}{9240}\)và \(\frac{57}{462}\)
c/m A=1/2(1/6+1/24+1/60+...........+1/9240)>57/462 làm chi tiết mình tick cho
A=\(\frac{1}{2}.\left(\frac{1}{6}+\frac{1}{24}+\frac{1}{60}+.......+\frac{1}{9240}\right)>\frac{57}{462}\)ta nhóm 6 là ngoài
A=\(\frac{1}{2}.6.\left(1+\frac{1}{4}+\frac{1}{10}+.........+\frac{1}{9240}\right)>\frac{57}{462}\)
A=3.(1+\(\frac{1}{1540}\))
A=3.\(\frac{1541}{1540}\)
A=3
\(\Rightarrow\)3>\(\frac{1541}{1540}\)