Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
💛Linh_Ducle💛
Xem chi tiết
Phạm Tuấn Đạt
22 tháng 10 2017 lúc 11:29

Ta có :

\(A=\frac{10^{1992}+1}{10^{1991}+1}\)

\(\Rightarrow\frac{1}{10}A=\frac{10^{1992}+1}{10^{1992}+10}=\frac{10^{1992}+10-11}{10^{1992}+10}=1-\frac{11}{10^{1992}+10}\)

\(B=\frac{10^{1993}+1}{10^{1992}+1}\)

\(\Rightarrow\frac{1}{10}B=\frac{10^{1993}+1}{10^{1993}+10}=\frac{10^{1993}+10-11}{10^{1993}+10}=1-\frac{11}{10^{1993}+10}\)

Mà \(10^{1993}+10>10^{1992}+10\)

\(\Rightarrow\frac{11}{10^{1993}+10}< \frac{11}{10^{1992}+10}\)

\(\Rightarrow1-\frac{11}{10^{1993}+10}>1-\frac{11}{10^{1992}+10}\)

\(\Leftrightarrow\frac{1}{10}B>\frac{1}{10}A\)

\(\Rightarrow B>A\)

Nguyễn Ngô Minh Trí
22 tháng 10 2017 lúc 11:33

B > A k minh di co gi vao kb roi minh giai ki cho

Phan Ngọc Khánh Toàn
22 tháng 10 2017 lúc 13:38

A>B mình đảm bảo luôn

Thanh Tùng DZ
Xem chi tiết
Đinh Đức Hùng
27 tháng 11 2016 lúc 12:25

\(\Rightarrow\frac{A}{10}=\frac{10^{1992}+1}{10^{1992}+10}=\frac{10^{1992}+10-9}{10^{1992}+10}=1-\frac{9}{10\left(10^{1991}+1\right)}\)

\(\Rightarrow\frac{B}{10}=\frac{10^{1993}+1}{10^{1993}+10}=\frac{10^{1993}+10-9}{10^{1993}+10}=1-\frac{9}{10\left(10^{1992}+1\right)}\)

Vì \(1-\frac{9}{10\left(10^{1991}+1\right)}< 1-\frac{9}{10\left(10^{1992}+1\right)}\Rightarrow A< B\)

Nguyễn Xuân Sáng
27 tháng 11 2016 lúc 12:18

So sánh tử và mẫu của 2 phân số với nhau.

Thanh Tùng DZ
27 tháng 11 2016 lúc 12:20

đừng có ngu,như thế sao đc

Đỗ Thị Vân Nga
Xem chi tiết
nguyễn yến nhi
Xem chi tiết
Nguyễn Anh Quân
2 tháng 3 2018 lúc 23:04

Có :

A = 10 - 9/10^1991+1

B = 10 - 9/10^1992+1

Vì 10^1991+1 < 10^1992+1 => 9/10^1991+1 > 9/10^1992+1

=> A < B

Tk mk nha

Trương Quỳnh Trang
Xem chi tiết
Le Thi Khanh Huyen
27 tháng 6 2016 lúc 17:22

\(10A=\frac{10^{1993}+10}{10^{1993}+1}=1+\frac{9}{10^{1993}+1}\)

\(10B=\frac{10^{1994}+10}{10^{1994}+1}=1+\frac{9}{10^{1994}+1}\)

\(10^{1993}+1< 10^{1994}+1\Rightarrow\frac{9}{10^{1993}+1}>\frac{9}{10^{1994}+1}\)

\(\Rightarrow10A>10B\)

\(\Rightarrow A>B\)

Lê Thanh Trung
12 tháng 8 2017 lúc 15:42

Ta có B=\(\frac{10^{1993}+1}{10^{1992}+1}>\frac{10^{1993}+1+9}{10^{1992}+1+9}=\frac{10^{1993}+10}{10^{1992}+10}\)

        =  \(\frac{10\left(10^{1992}+1\right)}{10\left(10^{1991}+1\right)}=\frac{10^{1992}+1}{10^{1991}+1}=A\)

   =>      B > A

nguyen quốc huy
23 tháng 10 2017 lúc 18:26

bạn Trần Thùy Dung sai rồi A và B nhân với 1:10

Nguyễn Hải Yến
Xem chi tiết
Đinh Đức Hùng
6 tháng 3 2017 lúc 21:22

\(\frac{A}{10}=\frac{10^{1992}+1}{10^{1992}+10}=\frac{\left(10^{1992}+10\right)-9}{10^{1992}+10}=1-\frac{9}{10^{1992}+10}\)

\(\frac{B}{10}=\frac{10^{1993}+1}{10^{1993}+10}=\frac{\left(10^{1993}+10\right)-9}{10^{1993}+10}=1-\frac{9}{10^{1993}+10}\)

Vì \(10^{1992}+10< 10^{1993}+10\) nên \(1+\frac{9}{10^{1993}+10}>1+\frac{9}{10^{1993}+10}\)

Do đó \(A>B\)

I Love You
6 tháng 3 2017 lúc 21:16

lấy máy tính mà tính!

Nguyễn Thị Thu Huyền
6 tháng 3 2017 lúc 21:22

tất nhiên A>B

Nguyễn Thị Thanh Tâm
Xem chi tiết
Hoàng Thị Hông Nhung
Xem chi tiết
Nguyễn Mai Chi
Xem chi tiết