Cho 2 phân số \(\frac{1}{2}\)và \(\frac{1}{3}\). Tìm phân số \(\frac{a}{b}\)có giá trị bằng phân số tối giản ở giữa \(\frac{1}{2}\) và \(\frac{1}{3}\) , biết rằng a + b = 122
Cho 2 phân số là \(\frac{1}{2}\)và \(\frac{1}{3}\)Tìm phân số \(\frac{a}{b}\)có giá trị bằng phân số tối giản ở giữa 2 phân số đã cho, biết rằng a+b=221
1,bạn An có một số bút chì gồm 3 loại :xanh, đỏ ,nâu .Biết \(\frac{1}{3}\)là số bút chì màu xanh ,số bút chì màu nâu bằng \(\frac{1}{2}\)số bút chì màu xanh và kèm bút chì màu đỏ là 6 chiếc .Hỏi bạn An có bao nhiêu bút chì mỗi loại?
2,a)tìm 5 phân số ở giữa 2 phân số \(\frac{1}{2}\)và \(\frac{3}{5}\)
b)tìm tất cả các phân số tối giản có mẫu số bằng 18 nằm giữa \(\frac{1}{4}\)và \(\frac{2}{3}\).
3,cho phân số \(\frac{12}{27}\).Tìm số tự nhiên để:
a)khi cùng thêm 1 số đó vào tử số và mẫu số của phân số đã cho thì được phân số mới có giá trị là \(\frac{3}{5}\)
b)khi thêm số đó vào mẫu số đồng thời bớt số đó ở tử số thì được phân số mới có giá trị là \(\frac{1}{3}\)
nhớ giải ra giúp mk nha ai nhanh mk tick 10 lần vì mk có 10 nick Ahihi
Bài 1: Cho phân số tối giản \(\frac{a}{b}\)=\(\frac{1}{1}\)+\(\frac{1}{2}\)+\(\frac{1}{3}\)+...+\(\frac{1}{18}\). Chứng minh rằng a chia hết cho 19.
Bài 2: Cho phân số A= \(\frac{2n-1}{n+1}\). Với các giá trị nào của n thì phân số trên là phân số tối giản.
Biết biểu thức P=\(\sqrt{\frac{1}{4}+\frac{1}{1^2}+\frac{1}{3^2}}+\sqrt{\frac{1}{4}+\frac{1}{3^2}+\frac{1}{5^2}}+\sqrt{\frac{1}{4}+\frac{1}{5^2}+\frac{1}{7^2}}\)\(+...+\sqrt{\frac{1}{4}+\frac{1}{799^2}+\frac{1}{801^2}}\)có giá trị bằng \(\frac{a}{b}\) với a, b là các số nguyên dương và \(\frac{a}{b}\) là phân số tối giản . Khi đó giá trị biểu thức Q= a-200b
Xét bài toán phụ sau:
Nếu \(a+b+c=0\Leftrightarrow\sqrt{\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}}=\left|\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right|\) \(\left(a,b,c\ne0\right)\)
Thật vậy
Ta có: \(\sqrt{\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}}=\sqrt{\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2-2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)}\)
\(=\sqrt{\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2-2\cdot\frac{a+b+c}{abc}}=\sqrt{\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2-2\cdot\frac{0}{abc}}\)
\(=\sqrt{\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2}=\left|\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right|\)
Bài toán được chứng minh
Quay trở lại, ta sẽ áp dụng bài toán phụ vào bài chính:
Ta có: \(P=\sqrt{\frac{1}{2^2}+\frac{1}{1^2}+\frac{1}{3^2}}+\sqrt{\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{5^2}}+...+\sqrt{\frac{1}{2^2}+\frac{1}{779^2}+\frac{1}{801^2}}\)
Vì \(2+1+\left(-3\right)=0\) nên:
\(\sqrt{\frac{1}{2^2}+\frac{1}{1^2}+\frac{1}{3^2}}=\sqrt{\frac{1}{2^2}+\frac{1}{1^2}+\frac{1}{\left(-3\right)^2}}=\sqrt{\left(\frac{1}{2}+\frac{1}{1}-\frac{1}{3}\right)^2}=\frac{1}{2}+1-\frac{1}{3}\)
Tương tự ta tính được:
\(\sqrt{\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{5^2}}=\frac{1}{2}+\frac{1}{3}-\frac{1}{5}\) ; ... ; \(\sqrt{\frac{1}{2^2}+\frac{1}{799^2}+\frac{1}{801^2}}=\frac{1}{2}+\frac{1}{799}-\frac{1}{801}\)
\(\Rightarrow P=\frac{1}{2}+1-\frac{1}{3}+\frac{1}{2}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{2}+\frac{1}{799}-\frac{1}{801}\)
\(=\frac{1}{2}\cdot400+\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{799}-\frac{1}{801}\right)\)
\(=200+\frac{800}{801}=\frac{161000}{801}=\frac{a}{b}\Rightarrow\hept{\begin{cases}a=161000\\b=801\end{cases}}\)
\(\Rightarrow Q=161000-801\cdot200=800\)
Chứng minh rằng với mọi số nguyên $n$
phân số dạng $\frac{n-2}{2.n+3}$ là phân số tối giản
cho phân số $B$=$\frac{n+1}{n+2}$ ($nez$)
$a,$tìm điều kiện để $B$ là phân số
$b,$tìm các số nguyên $n$ để $B$ có giá trị nguyên
Chứng minh rằng với mọi số nguyên $n$
phân số dạng $\frac{n-2}{2.n+3}$ là phân số tối giản
cho phân số $B$=$\frac{n+1}{n+2}$ ($nez$)
$a,$tìm điều kiện để $B$ là phân số
$b,$tìm các số nguyên $n$ để $B$ có giá trị nguyên
1)Trong tháng 1 năm 1991 có ba ngày thứ năm là ba số nguyên tố. Với nhận xét đó, bạn hãy tính xem ngày 3-2-1991 vào thứ mấy ?
2)Tìm hai số tự nhiên a và b biết tích của chúng bằng 2940 và BCNN(a,b) = 210
3)
a) Tìm \(\overline{ab}\) để \(\frac{\overline{ab}}{a+b}\)nhỏ nhất.
b)Chứng minh : \(\frac{1}{5^2}+\frac{1}{6^2}+...+\frac{1}{2007^2}>\frac{1}{5}\)
4) Chứng tỏ rằng với mọi \(n\in Z\)thì phân số \(\frac{7n}{7n+1}\)luôn là phân số tối giản.
5) Tìm tập hợp các số nguyên x để\(\frac{5x}{3}:\frac{10x^2+5x}{21}\)có giá trị nguyên
6)
a) Tìm phân số \(\frac{a}{b}\)bằng phân số \(\frac{44}{66}\)và ƯCLN(a,b)=36
b) Tìm x biết \(\frac{1}{3}+\frac{1}{15}+\frac{1}{35}+...+\frac{1}{x\left(x+2\right)}=\frac{20}{41}\)
Bạn gì ơi đăng thì đăng ít bài 1 thôi bạn đăng nhiều thế chẳng ai làm hết đc đâu
Mình làm bài 4
Ta có ; 7n và 7n + 1 là 2 số nguyên liên tiếp
Mà ƯCLN của 2 số nguyên liên tiếp luôn luôn bằng 1
Vậy phân số : \(\frac{7n}{7n+1}\) luôn luôn tối giản với mọi n
Bài 6 b) :
Ta có : \(\frac{1}{3}+\frac{1}{15}+\frac{1}{35}+......+\frac{1}{x\left(x+2\right)}=\frac{20}{41}\)
\(\Leftrightarrow\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+.....+\frac{1}{x\left(x+2\right)}=\frac{20}{41}\)
\(\Leftrightarrow\frac{1}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+.....+\frac{2}{x\left(x+2\right)}\right)=\frac{20}{41}\)
\(\Leftrightarrow\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+......+\frac{1}{x}-\frac{1}{x+2}\right)=\frac{20}{41}\)
\(\Leftrightarrow\frac{1}{2}\left(1-\frac{1}{x+2}\right)=\frac{20}{41}\)
\(\Leftrightarrow1-\frac{1}{x+2}=\frac{20}{41}:\frac{1}{2}=\frac{40}{41}\)
\(\Leftrightarrow\frac{1}{x+2}=1-\frac{40}{41}\)
\(\Leftrightarrow\frac{1}{x+2}=\frac{1}{41}\)
=> x + 2 = 41
=> x = 31
1.chứng tỏ rằng với mọi số nguyên n, các phân số sau đây là phân số tối giản :
\(\frac{15n+1}{30n+1}\)
a)b)\(\frac{n^3+2n}{n^4+3n^2+1}\)
2.Tìm tất cả các số nguyên để phân số \(\frac{18n+3}{21n+7}\)là phân số tối giản
3.Tìm phân số \(\frac{a}{a.b}\)biết rằng phân số đó bằng phân số \(\frac{1}{6.a}\)
4.Chứng tỏ rằng nếu phân số \(\frac{5n^2+1}{6}\)là số tự nhiên với n thuộc \(ℕ\)thì cả phân số \(\frac{n}{2}\)và\(\frac{n}{3}\)là các phân số tối giản
Ai làm đúng cả 4 bài mk tích cho nhé !!!
1,Chứng minh rằng \(\frac{n-5}{3n-14}\)là phân số tối giản
2, Tìm phân số có giá trị bằng \(\frac{5}{6}\)biết rằng tổng của tử số và mẫu số là 88 (giải bằng 2 cách)
3, Tìm số nguyên n để các phân số sau có giá trị là số nguyên \(\frac{n+2}{n-1}\)
Mik học lớp 6 nhưng lại quên mất câu trả lời rồi!
sorry bạn nha!
1. Gọi d là ƯC(n - 5 ; 3n - 14)
\(\Rightarrow\hept{\begin{cases}n-5⋮d\\3n-14⋮d\end{cases}\Rightarrow\hept{\begin{cases}3\left(n-5\right)⋮d\\3n-14⋮d\end{cases}\Rightarrow}}\hept{\begin{cases}3n-15⋮d\\3n-14⋮d\end{cases}}\)
=> ( 3n - 15 ) - ( 3n - 14 ) chia hết cho d
=> 3n - 15 - 3n + 14 chia hết cho d
=> ( 3n - 3n ) + ( 14 - 15 ) chia hết cho d
=> 0 + ( -1 ) chia hết cho d
=> -1 chia hết cho d
=> d = 1 hoặc d = -1
=> ƯCLN(n - 5 ; 3n - 14) = 1
=> \(\frac{n-5}{3n-14}\)tối giản ( đpcm )
2. Gọi phân số cần tìm là \(\frac{a}{b}\)
Theo đề bài ta có : \(\frac{a}{b}=\frac{5}{6}\)và \(a+b=88\)
=> \(\frac{a}{5}=\frac{b}{6}\)và \(a+b=88\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{a}{5}=\frac{b}{6}=\frac{a+b}{5+6}=\frac{88}{11}=8\)
\(\frac{a}{5}=8\Rightarrow a=40\)
\(\frac{b}{6}=8\Rightarrow b=48\)
=> \(\frac{a}{b}=\frac{40}{48}\)
Vậy phân số cần tìm là \(\frac{40}{48}\)
3. \(\frac{n+2}{n-1}=\frac{n-1+3}{n-1}=1+\frac{3}{n-1}\)
Để \(\frac{n+2}{n-1}\)có giá trị nguyên => \(\frac{3}{n-1}\)có giá trị nguyên
=> \(3⋮n-1\)
=> \(n-1\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
=> \(n\in\left\{2;0;4;-2\right\}\)