Tính nhanh
Q=\(\frac{3}{3x5}\)+\(\frac{3}{5x7}\)+\(\frac{3}{7x9}\)+....+\(\frac{3}{47x49}\)
Tìm y biết:
\(\left(\frac{2}{1x3}+\frac{2}{3x5}+\frac{2}{5x7}+\frac{2}{7x9}+\frac{2}{9x11}\right)\cdot y=\frac{2}{3}\)
\(\left(\frac{2}{1x3}+\frac{2}{3x5}+\frac{2}{5x7}+\frac{2}{7x9}+\frac{2}{9x11}\right).y=\frac{2}{3}\)
\(\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}\right)y=\frac{2}{3}\)
\(\left(1-\frac{1}{11}\right).y=\frac{2}{3}\)
\(\frac{10}{11}.y=\frac{2}{3}\)
\(y=\frac{2}{3}.\frac{11}{10}\)
\(y=\frac{22}{30}\)
\(\left(\frac{2}{1x3}+\frac{2}{3x5}+\frac{2}{5x7}+\frac{2}{7x9}+\frac{2}{9x11}\right).y=\frac{2}{3}\)
\(\frac{10}{11}.y=\frac{2}{3}\)
\(y=\frac{11}{15}\)
\(\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}\right).y=\frac{2}{3}\)
\(\left(\frac{3-1}{1.3}+\frac{5-3}{3.5}+...+\frac{11-9}{9.11}\right).y=\frac{2}{3}\)
\(\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{9}-\frac{1}{11}\right).y=\frac{2}{3}\)
\(\left(\frac{1}{1}-\frac{1}{11}\right).y=\frac{2}{3}\)
\(\frac{10}{11}.y=\frac{2}{3}\)
\(y=\frac{2}{3}:\frac{10}{11}\)
\(y=\frac{11}{15}\)
\(A=\frac{1}{3X5}+\frac{1}{5X7}+...+\frac{1}{47X49}+\frac{1}{49X51}\)
giải hộ mình nha
2A = 2/3x5 + 2/5x7 + ... + 2/47x49 + 2/49x51
2A = 1/3 - 1/5 + 1/5 - 1/7 + ... + 1/47 - 1/49 + 1/49 - 1/51
2A = 1/3 - 1/51
2A = 16/51
A = 16/51 : 2 =8/51
A = 1/2 . ( 1/3 -1/5 + 1/5-1/7 + ...+1/47 - 1/49 + 1/49 - 1/51)
A = 1/2 .(1/3 -1/51)
A=1/2 . 16/51
A= 8/51
A=1/3.5+1/5.7+...+1/47.49+1/49.51
2A=2/3.5+2/5.7+...+2/47.49+2/49.51
2A=1/3-1/5+1/5-1/7+...+1/47-1/49+1/49-1/51
2A=1/3-1/51=48/153
=> A=48/153:2=8/51
Tính
\(\frac{1}{1x3}+\frac{1}{3x5}+\frac{1}{5x7}+\frac{1}{7x9}+\frac{1}{9x11}\)
\(S.2=\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}\)
\(S.2=\frac{1}{1}-\frac{1}{11}\)
\(S.2=\frac{10}{11}\)
\(S=\frac{10}{11}:2\)
\(S=\frac{5}{11}\)
\(=\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}\)
\(=\frac{1}{1}-\frac{1}{11}\)
\(=\frac{10}{11}\)
\(\frac{2}{3x5}+\frac{2}{5x7}+\frac{2}{7x9}+\frac{2}{9x11}+\frac{2}{11x13}+\frac{2}{13x15}\)Tính
\(\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+\frac{2}{7\cdot9}+\frac{2}{9\cdot11}+\frac{2}{11\cdot13}+\frac{2}{13\cdot15}\)
\(=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}+\frac{1}{11}-\frac{1}{13}+\frac{1}{13}-\frac{1}{15}\)
\(=\frac{1}{3}-\frac{1}{15}\)
\(=\frac{4}{15}\)
Chúc bn hok giỏi !!!!!!!!! ^_^
\(\frac{2}{3x5}+\frac{2}{5x7}+\frac{2}{7x9}+...+\frac{2}{17x19}\)
\(A=\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+...+\frac{2}{17\cdot19}\)
\(A=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{17}-\frac{1}{19}\)
\(A=\frac{1}{3}-\frac{1}{19}\)
\(A=\frac{16}{57}\)
Dấu "." là dấu nhân nhá ^^
\(\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+\frac{2}{7\cdot9}+...+\frac{2}{17\cdot19}\)
\(=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{17}-\frac{1}{19}\)
\(=\frac{1}{3}-\frac{1}{19}\)
\(=\frac{16}{57}\)
\(\frac{2}{3\times5}+\frac{2}{5\times7}+...+\frac{2}{17\times19}\)
\(=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{17}-\frac{1}{19}\)
\(=\frac{1}{3}-\frac{1}{19}\)
\(=\frac{16}{57}\)
Code : Breacker
\(\left(\frac{1}{1x3}+\frac{1}{3x5}+\frac{1}{5x7}+\frac{1}{7x9}+\frac{1}{9x11}\right)\)
\(=\left(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{9.11}\right)\)
\(=\frac{1}{2}.\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{9}-\frac{1}{11}\right)\)
\(=\frac{1}{2}.\left(\frac{1}{1}-\frac{1}{11}\right)\)
\(=\frac{1}{2}.\frac{10}{11}\)
\(=\frac{5}{11}\)
\(=\frac{1}{2}\times\left(\frac{2}{1\times3}+\frac{2}{3\times5}+....+\frac{2}{9\times11}\right)\)
\(=\frac{1}{2}\times\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+....+\frac{1}{9}-\frac{1}{11}\right)\)
\(=\frac{1}{2}\times\left(1-\frac{1}{11}\right)\)
\(=\frac{1}{2}\times\frac{10}{11}\)
\(=\frac{5}{11}\)
\(B=\frac{4}{3x5}-\frac{6}{5x7}+\frac{8}{7x9}-\frac{10}{9x11}+\frac{12}{11x13}-...+\frac{100}{99x101}\)
tinh nhanh p=\(\frac{1}{3x5}+\frac{1}{5x7}+\frac{1}{7x9}+...+\frac{1}{2015x2017}+\frac{1}{2017x2019}\)
p=1/(3*5)+1/(5*7)+.....+1/(2015*2017)+1/(2017*2019)
<=> p = 1/3-1/5+1/5-1/7+1/7-......+1/2017-1/2019
<=> p = 1/3 - 1/2019
<=> p = 224/673
\(P=\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+...+\frac{1}{2015.2017}+\frac{1}{2017.2019}\)
\(=\frac{1}{2}\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{2017}-\frac{1}{2019}\right)\)
\(=\frac{1}{2}\left(\frac{1}{3}-\frac{1}{2019}\right)\)
\(=\frac{112}{673}\)
\(\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+...+\frac{1}{2015.2017}+\frac{1}{2017.2019}\)
\(=\frac{1}{2}.\left(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+....+\frac{2}{2015.2017}+\frac{2}{2017.2019}\right)\)
\(=\frac{1}{2}.\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+....+\frac{1}{2015}-\frac{1}{2017}+\frac{1}{2017}-\frac{1}{2019}\right)\)
\(=\frac{1}{2}.\left(\frac{1}{3}-\frac{1}{2019}\right)=\frac{1}{2}.\frac{224}{673}=\frac{112}{673}\)
\(\frac{2}{3x5}+\frac{2}{5x7}+\frac{2}{7x9}+....+\frac{2}{99x101}\)
\(\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+\frac{2}{7\cdot9}+...+\frac{2}{99\cdot101}\)
\(=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{99}-\frac{1}{101}\)
\(=\frac{1}{3}-\frac{1}{101}\)
\(=\frac{98}{303}\)
Tích mk nha bn !!!! ^_^