Bài : Cho M=1+2+2^2+2^3+....+2^99
a; Chứng tỏ M chia hết cho 3
b; Tìm chữ số tận cùng của M
Các bạn giúp mình với mình đang cần gấp
Cho S 1 3 3 mũ 2 3 mũ 3 .... 3 mũ 98 3 mũ 99a Chứng minh rằng S là bội của 20b Tính S, từ đó suy ra 3mux 100 chia 4 dư 1
Bài 1: CMR: 2n^2 (n+1) -2n (n^2+n-3) chia hết cho 6 vs n thuộc Z
Bài 2: Cho P =(m^2-2m+4) (m+2) -m^3+(m+3) (m-3) -m^2-18. CMR: Giá trị của P không phụ thuộc vào m
Bài 1.
2n2( n + 1 ) - 2n( n2 + n - 3 )
= 2n3 + 2n2 - 2n3 - 2nn + 6n
= 6n \(⋮6\forall n\inℤ\)( đpcm )
Bài 2.
P = ( m2 - 2m + 4 )( m + 2 ) - m3 + ( m + 3 )( m - 3 ) - m2 - 18
P = m3 + 8 - m3 + m2 - 9 - m2 - 18
P = 8 - 9 - 18 = -19
=> P không phụ thuộc vào biến M ( đpcm )
Bài 1 cho pt x^2-2(m+1)x+4m+m^2=0 .Tìm m để phương trình có 2 nghiệm phân biệt x1,x2 sao cho biểu thức A =|x1-x2| đạt giá trị nhỏ nhất
bài 2 cho pt x^2+mx+2m-4=0.Tìm m để phương trình có 2 nghiệm phân biệt x1,x2 thỏa mãn |x1|+|x2|=3
bài 3 cho pt x^2-3x-m^2+1=0.tìm m để phương trình có 2 nghiệm phân biệt x1,x2 thỏa mãn |x1|+2|x2|=3
Bài 8; Cho B=1/2+1/3^2+1/3^3+...+1/3^n
C/M B < 1/2
Bài 9; Cho A= (1/2^2-1)*(1/3^2-1)*(1/4^2)*...*(1/100^2-1)
Bài 1: Cho m^2-2n^2=m.n .Tính m-n/m+n (điều kiện: m+n khác 0)
Bài 2: cho 9x^2+4y^2=20xy . Tính A= 3x-2y/3x+2y
Bài 3: cho 4a^2+b^2=5ab (2a>b>0). Tính M= ab/4a^2-b
Bài 1: Tìm n thuộc N* sao cho n3 - n2 + n - 1 là số tự nhiên
Bài 2: C/m nếu 2n - 1 (n > 2) là số nguyên tố thì 2n + 1 là hợp số
Bài 3: Cho m và m2 + 2 là số nguyên tố. C/m m3 + 2 cùng là số nguyên tố
1,
Đặt A = n3 - n2 + n - 1
Ta có A = n2(n - 1) + (n - 1) = (n - 1)(n2 + 1)
Vì A nguyên tố nên A chỉ có 2 Ư. Ư thứ 1 là 1 còn Ư thứ 2 nguyên tố nên ta suy ra 2 trường hợp :
TH1 : n - 1 = 1 và n2 + 1 nguyên tố
⇒
n = 2 và n2 + 1 = 5 nguyên tố (thỏa)
TH2 : n2 + 1 = 1 và n - 1 nguyên tố
⇒
n = 0 và n - 1 = - 1( ko thỏa)
Vậy n = 2
2 ,
Xột số A = (2n – 1)2n(2n + 1)
A là tích của 3 số tự nhiên liờn tiệp nên A ⋮ 3
Mặt khỏc 2n – 1 là số nguyên tố ( theo giả thiết )
2n không chia hết cho 3
Vậy 2n + 1 phải chia hết cho 3 ⇒ 2n + 1 là hợp số.
3 ,
Giải:
Với m=2 thì m2+2=4+2= 6 là hợp số (loại)
Với m=3 thì m2+2 = 9+2= 11 (thoải mãn)
Với m= 3k+1 ( với k ẻ N) thì: m2+2 = (3k+1)2 +2 = 3(3k2+2k+1) là hợp số ( loại)
Với m= 3k+2 thì: m2+2= (3k+2)2 +2 = 3(3k2+4k+2) là hợp số (loại)
Vậy với m= 3 thì m và m2+2 là số nguyên tố. Khi đó m3+ 2= 33+2 = 29 là số nguyên tố.
Bài 1: Tìm a thuộc z để:
(3a^3+8a^2-15a+6)chia hết cho (3a-1)
bài 2: Tìm m để
a, (x^4+5x^3-x^2-17x+m+4)chia hết cho (x^2+2x-3)
b, (2x^4+mx^3-mx-2) chia hết cho (x^2-1)
Tìm m để
a, (x^4+5x^3-x^2-17x+m+4)chia hết cho (x^2+2x-3)
b, (2x^4+mx^3-mx-2) chia hết cho (x^2-1)
bài 1:tìm số tự nhiên x biết:
a)x+25=40
b)215-2(x+35)=15
c)(2x-3)^3=125
d)2(x+25)=60
bài 2:Chứng minh rằng :
M=3^n+1+3^n+1+2^n+3+2^n+2:6
bài 3 thực hiện các phép tính sau
a) 4.5^2 - 64:2^3
b)24.[119 - (23 - 6 )]
bài 4 Cho M =2+2^2+2^3+... +2^20
Chứng tỏ rằng M chia hết cho 5
a)X= 40-15=25
b)2(x+35)=215-15
2(x+35)=200
x+35=100
X=65
c)(2x-3)^3=5^3
2x-3=5
2x=8
x=4
Bài 1: Rút gọn biểu thức
a, (x+y)^2-(x-y)^2
b, 2(x-y)(x+y)+(x+y)^2+(x-y)^2
Bài 2: Tìm X
a) (2X+1)^2-4(x+2)^2=9
b) 3(x-1)^2-3x(x-5)=21
Bài 3: Cho biểu thức
M=(x-3)^3-(x-1)^3+12x(x-1)
a, Rút gọn M
b, Tính giá trị M tại x= -2/3
c, Tìm x để M=-16
Bài 1:
a.\(\left(x+y\right)^2-\left(x-y\right)^2=\left(x+y-x+y\right)\left(x+y+x-y\right)=2\left(x+y\right)\)
b.\(2\left(x+y\right)\left(x-y\right)+\left(x+y\right)^2+\left(x-y\right)^2=\left(x+y+x-y\right)^2=4x^2\)
Bài 4: Tìm chữ số tận cùng của M
M=1+7+7 mu 2+...+7 mu 81
Bài 5: Cho M=1+2+2 mu 2+...+2 mu 206
a) Chứng tỏ: M chia hết cho 7
b) Chứng tỏ: M không chia hết cho 15
c) Tìm x thuộc N,biết:M+1=2
Bài 6:Chứng tỏ:
A=1+3+3 mu 2+...+3 mu 59 chia hết cho 13
B=1+3+3 mu 2+...+3 mu 61 không chia hết cho 13
giải nhanh dùm mình.
rồi minh tích cho.
Bài 4:
Ta có:
M=1+7+72+...+781
M=(1+7+72+73)+(74+75+76+77)+...+(778+779+780+781)
M=(1+7+72+73)+74.(1+7+72+73)+...+778.(1+7+72+73)
M=400+74.400+...+778.400
M=400.(1+74+...+778)
\(\Rightarrow\)M=......0
Vậy chữ số tận cùng của M là chữ số 0
Bài 5:
a)Ta có:
M=1+2+22+...+2206
M=(1+2+22)+(23+24+25)+...+(2204+2205+2206)
M=(1+2+22)+23.(1+2+22)+...+2204.(1+2+22)
M=7+23.7+...+2204.7
M=7.(1+23+...+2204)\(⋮\)7
Vậy M chia hết cho 7
c)Câu này đề có phải là M+1=2x ko?Nếu đúng thì giải như zầy nè:
Ta có:
M=1+2+22+...+2206
2M=2+22+23+...+2207
2M-M=(2+22+23+...+2207)-(1+2+22+...+2206)
M=2+22+23+...+2207-1-2-22-...-2206
\(\Rightarrow\)M=2207-1
M+1=2207-1+1
M+1=2207
Ta có:
M+1=2x
2x=M+1
2x=2207
x=2207:2
x=\(\frac{2^{207}}{2}\)
Bài 6:
Ta có:
A=(1+3+32)+(33+34+35)+...+(357+358+359)
A=(1+3+32)+33.(1+3+32)+...+357.(1+3+32)
A=13+33.13+...+357.13
A=13.(1+33+..+357)\(⋮\)13
Vậy A chia hết cho 13
mk chỉ biết giải dc từng nấy câu thui. thông cảm cho mk nha