tìm nghiệm nguyên của hệ phương trình :
\(\hept{\begin{cases}y^3=x^3+2x^2+1\\xy=z^2+2\end{cases}}\)
TÌM NGHIỆM NGUYÊN CỦA HỆ PHƯƠNG TRÌNH
1, \(\hept{\begin{cases}xy=x+y+z\\xz=2\left(x-y+z\right)\\yz=3\left(y-x+z\right)\end{cases}}\)
TÌM NGHIỆM NGUYÊN DƯƠNG CỦA HỆ PHƯƠNG TRÌNH
1, \(\hept{\begin{cases}x=5y+3\\x=11z+7\end{cases}}\)(x, y, z nhỏ nhất)
2,\(\hept{\begin{cases}x+2y+3z=20\\3x+5y+4z=37\end{cases}}\)(x, y, z nhỏ nhất)
3, \(\hept{\begin{cases}z+y=x+10\\yz=10x+1\end{cases}}\)
4, \(\hept{\begin{cases}x+y+z=100\\5x+3y+\frac{z}{3}=100\end{cases}}\)
GIẢI PHƯƠNG TRÌNH
1, \(x^2-2x=2\sqrt{2x-1}\)
2,\(\frac{3x}{\sqrt{3x+10}}=\sqrt{3x+1}-1\)
MỌI NGƯỜI GIẢI GIÚP MÌNH VỚI
ko bít sorry nhaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
Tìm nghiệm nguyên của hệ phương trình:
\(\hept{\begin{cases}x-y+z=2\\2x^2-xy+x-2z=1\end{cases}}\)
GIẢI GIÚP MÌNH BÀI TOÁN NÀY ĐI Ạ!
Tìm nghiệm nguyên của hệ phương trình
\(\hept{\begin{cases}xy=x+y-z\\xz=2\left(x-y+z\right)\\yz=3\left(y-x+z\right)\end{cases}}\)
Tìm nghiệm nguyên dương của hệ phương trình
\(\hept{\begin{cases}x=5y+3\\x=11z+7\end{cases}}\)(x,y,z nhỏ nhất)
\(\hept{\begin{cases}x+2y+3z=20\\3x+5y+4z=37\end{cases}}\)(x,y,z nhỏ nhất)
LÀM GIÚP MÌNH Ạ!!! MAI MÌNH PHẢI KIỂM TRA RỒI!!!!
Tìm nghiệm nguyên của hệ phương trình
\(\hept{\begin{cases}xy=x+y-z\\xz=2\left(x-y+z\right)\\yz=3\left(y-x+z\right)\end{cases}}\)
Tìm nghiệm nguyên dương của hệ phương trình
\(\hept{\begin{cases}x=5y+3\\x=11z+7\end{cases}}\)(x,y,z nhỏ nhất)
\(\hept{\begin{cases}x+2y+3z=20\\3x+5y+4z=37\end{cases}}\)(x,y,z nhỏ nhất)
câu a)
nhân cả 3 phương trình
ta được
\(x^2y^2z^2=6\left(x+y-z\right)\left(x-y+z\right)\left(y-x+z\right)\)
Vế trái là 1 số chính phương nên Vp cũng là số chính phương
6 không phải là số chính phương nên
\(\left(x+y-z\right)\left(x-y+z\right)\left(y-x+z\right)\)=6
lập bảng
đặt x+y-z=1 ; x-y+z=2; y-x+z=3 giải ra và tương tự xét các cái còn lại (hơi lâu) nhớ xét thêm cái âm nữa
câu b)
từ hpt =>5y+3=11z+7
<=>\(y=\frac{11z+4}{5}\)>0 với mọi y;z thuộc R
y nguyên dương nên (11z+4)thuộc bội(5) và z_min
=> z=1
=> y=3
=> x =18 (t/m)
câu c)
qua pt (1) =>x=20-2y-3z
thay vao 2) <=> y+5z=23
y;z là nguyên dương mà 5z chia hêt cho 5
=> z={1;2;3;4}
=> y={18;13;8;3}
=> x={-19;-12;-5;2} đoạn này bạn làm từng GT của z nhé
chọn x=2; y=3; z=4 (t/m)
Nếu có sai sót hãy báo lại qua gmail: tiendung230103@gmail.com
Bạn giải nốt giùm mình câu a được ko?
Tìm nghiệm nguyên của hệ phương trình:
a) \(\hept{\begin{cases}z^2-y^3=11\\z^2=2y^2+1\end{cases}}\) b) x+y+z=6 ; xy+yz-xz=7 và x^2+y^2+z^3=14
a)cho hệ phương trình \(\hept{\begin{cases}x-2y=3-m\\2x+y=3\left(m+2\right)\end{cases}}\)
Gọi nghiệm của hệ phương trình là(x;y)Tìm m để \(x^2+y^2\)đạt GTNN
b)Cho hệ phương trình \(\hept{\begin{cases}mx+y=5\\2x-y=2\end{cases}}\)
Tìm m để hệ phương trình có nghiệm thỏa mãn x+y=1
Tìm cặp nghiệm (x;y) thỏa mãn x<0 của hệ phương trình:
\(\hept{\begin{cases}2x^2-y^3+2xy+2xy^2=3\\x^2-y^3+xy=1\end{cases}}\)
Ai giỏi toán giải giúp mình mấy hệ phương trình
1.\(\hept{\begin{cases}\left|x-1\right|-\left|y-5\right|=1\\y=5+\left|x-1\right|\end{cases}}\)
2.\(\hept{\begin{cases}2x^3+3yx^2=5\\y^3+6xy^2=7\end{cases}}\)
3.\(\hept{\begin{cases}x-1=\left|2y-1\right|\\y-1=\left|2z-1\right|\\z-1=\left|2x-1\right|\end{cases}}\)
4.\(\hept{\begin{cases}x^2+xy+y^2=7\\y^2+yz+z^2=28\\x^2+xz+z^2=7\end{cases}}\)
5.\(\hept{\begin{cases}\left|x-1\right|+y=0\\x+3y-3=0\end{cases}}\)
\(\hept{\begin{cases}x^2+y^2+xy=3\\xy+3x^2=4\end{cases}}\)
TÌm nghiệm nguyên dương của hệ phương trình
\(\hept{\begin{cases}z+y=x+10\\yz=10x+1\end{cases}}\)
\(\hept{\begin{cases}x+y+z=100\\5x+3y+\frac{z}{3}=100\end{cases}}\)
Tính
\(\sqrt{2x+1}+3\sqrt{4x^2-2x+1}=3+\sqrt{8x^2+1}\)
\(\sqrt{x^2+3}-\sqrt{6-x^2}=3+\sqrt{\left(x^2+3\right).\left(6-x^2\right)}\)