Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Hiền Ngọc
Xem chi tiết
Đòan đức duy
Xem chi tiết
titanic
15 tháng 9 2018 lúc 8:14

Áp dụng \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)và \(x+y\ge2.\sqrt{xy}\)( dấu ''='' xảy ra ở 2 bđt này khi x=y )

Ta có \(B=\frac{1}{a}+\frac{1}{b}+\frac{2}{a+b}\ge\frac{4}{a+b}+\frac{2}{a+b}=\frac{6}{a+b}\)

\(=\frac{6}{a+b}+\frac{3\left(a+b\right)}{2}-\frac{3.\left(a+b\right)}{2}\ge2\sqrt{\frac{6}{a+b}.\frac{3\left(a+b\right)}{2}}-\frac{3.2.\sqrt{ab}}{2}\)

\(=2\sqrt{9}-3.\sqrt{ab}=6-3=3\)

Dấu ''='' xảy ra khi \(\hept{\begin{cases}\frac{6}{a+b}=\frac{3.\left(a+b\right)}{2}\\a=b\\a.b=1\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}\frac{6}{2a}=\frac{3.2a}{2}\\a=b\\a.b=1\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}12a^2=12\\a=b\\a.b=1\end{cases}}\)\(\Leftrightarrow a=b=1\)

Nguyễn Phúc Minh Anh
Xem chi tiết
Nguyễn Vũ Thùy Dung
19 tháng 5 2022 lúc 21:49

vì (a-1)2 ≥ 0 nên a2 +1 ≥ 2a  ∀mọi x    (1)

vì (b-1)2 ≥ 0 nên b2 +1 ≥ 2b ∀ mọi x      (2)

từ 1 và 2 ⇒ a2+b≥ 2a+2b

               ⇒ A≥ 2(a+b)=2

dấu''=' xảy ra khi a=b=1/2

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
28 tháng 5 2018 lúc 11:56

Chọn B.

Ta có 6 ≤ log2(a + 1) + log2(b + 1) = log2[(a + 1)(b + 1) ]

Suy ra:  hay ( a + b) 2 + 4( a + b) + 4 ≥ 256

Tương đương: (a + b) 2 + 4(a + b) - 252 ≥ 0

Suy ra: a + b ≥ 14

Lê Trọng Bằng
Xem chi tiết
Lê Song Phương
18 tháng 5 2023 lúc 20:33

Ta thấy \(ab\le\dfrac{a^2+b^2}{2}=1\) và \(a+b\le\sqrt{2\left(a^2+b^2\right)}=2\). Áp dụng BĐT B.C.S, ta được \(P=\dfrac{a^4}{ba^2+a^2}+\dfrac{b^4}{ab^2+b^2}\) \(\ge\dfrac{\left(a^2+b^2\right)^2}{ba^2+ab^2+a^2+b^2}=\dfrac{2^2}{ab\left(a+b\right)+2}\ge\dfrac{4}{1.2+2}=1\)

ĐTXR \(\Leftrightarrow a=b=1\)

Vậy GTNN của P là 1 khi \(a=b=1\)

Nguyen Xuan Mai
Xem chi tiết
Tôi thích hoa hồng
11 tháng 3 2016 lúc 0:44

ffff5ytttr676879763

Nguyễn Hải Đăng
Xem chi tiết
Nguyễn Minh Quang
5 tháng 8 2021 lúc 7:16

ta có :

\(P=a+\frac{1}{b\left(a-b\right)}=\left(a-b\right)+b+\frac{1}{b\left(a-b\right)}\ge3\sqrt[3]{\left(a-b\right).b.\frac{1}{b\left(a-b\right)}}=3\)

Vậy m=3

dấu bằng xảy ra khi \(a-b=b=\frac{1}{b\left(a-b\right)}\Leftrightarrow\hept{\begin{cases}a=2\\b=1\end{cases}}\)

vậy \(\hept{\begin{cases}a_1=2\\b_1=1\end{cases}\Rightarrow a_1+b_1+m=2+1+3=6}\)

Khách vãng lai đã xóa
hotboy2002
Xem chi tiết
nguyen van bi
7 tháng 12 2020 lúc 19:22

bạn kiểm tra lại xem có sai đề không

Khách vãng lai đã xóa
hotboy2002
Xem chi tiết