cho phân số \(\frac{a}{b}\) (a,b thuộc N,b khác 0)
giả sử\(\frac{a}{b}\)nhỏ hơn 1 và m thuộc N,m khác 0.Chứng minh rằng:
\(\frac{a}{b}\)nhỏ hơn\(\frac{a+m}{b+m}\)
cho phân số a phần b, biết a, b thuộc N, b khác 0
giả sử a phần b < 1 và m thuộc N, m khác 0. chứng tỏ rằng
\(\frac{a}{b}<\frac{a+m}{b+m}\)
Cho phân số \(\frac{a}{b}\) ( a, b thuộc N , b khác 0 )
Giả sử \(\frac{a}{b}\) < 1 và m thuộc N, m khác 0. Chứng tỏ rằng:
\(\frac{a}{b}\) < \(\frac{a+m}{b+m}\)
\(\frac{a}{b}\)< 1 <=> a < b <=> a.m < b.m <=> ab + a.m < ab + b.m
<=> a(b + m) < b(a + m)
<=> \(\frac{a}{b}\)< \(\frac{a+m}{b+m}\)
Cho phân số \(\frac{a}{b}\)(a,b thuộc N, b khác 0)
Giả sử \(\frac{a}{b}\)>1 và m thuộc N, m khác 0. CTR
\(\frac{a}{b}\)> \(\frac{a+m}{b+m}\)
Bài 1 Tìm hai phân số khác nhau,các phấn số này lớn hơn 1/5 nhưng nhỏ hơn 1/4.
Bài 2 : a) Cho phân số a/b (a,b thuộc tập hợp N , b khác 0. Giả sử a/b < 1 và m thuộc tập hợp N,m khác 0 . Chứng tỏ rằng
a/b<a+m/b+m
b) Áp dụng kết quả ở câu a) để só sánh 434/561 và 441/568
Bài 3 : Cho phân số a/b (a,b thuộc tập hợp N , b khác 0. Giả sử a/b > 1 và m thuộc tập hợp N,m khác 0.Chứng tỏ rằng
a/b>a+m/b+m
b) Áp dụng kết quả ở câu a) để só sánh: 237/142 và 246/151
Bài 4: So sánh : A=1718+1/1719+1 và B = 1717+1/1718+1
Bài 5 : So sánh : C=9899+1/9889+1 và D = 9898+1/9888+1
1. so sánh số hữu tỉ \(\frac{a}{b}\) (a,b \(\in\) \(ℤ\) , b \(\ne\)0) với số 0 khi a,b cùng dấu và khác dấu
2.giả sử x=\(\frac{a}{m}\), y=\(\frac{b}{m}\)(a,b,m \(\inℤ\) ,m lớn hơn 0) và x nhỏ hơn y. Hãy chứng tỏ rằng nếu chọn z=\(\frac{a+b}{2m}\)thì ta có x lớn hơn z lớn hơn y
Chứng minh rằng : nếu a/b < c/d ( b > 0 ; d > 0 ) thì a/b < a+c/b+d< c/d
a) tìm 4 phân số lớn hơn \(\frac{-1}{2}\)và nhỏ hơn \(\frac{-1}{3}\)
b) Chứng minh rằng : \(\frac{a}{m}< \frac{a+b}{2m}< \frac{b}{m}\)( với a, b, m\(\in Z\); m > 0 )
cho phân số a/b(a,b thuộc N , b khác 0).
giả sử a/b < 1 và m thuộc N, m khác 0.Chứng tỏ rằng:
a/b < a+m/b+m
b
áp dụng kết quả ở câu a để so sánh 434/561 và 441/568
Giả sử x=\(\frac{a}{m}\)y=\(\frac{b}{m}\)(a,b,m thuộc Z, m khác 0) và x<y. Hãy chứng minh rằng nếu chọn z=\(\frac{a+b}{2b}\)thì ta có x<z<y
bn tham khảo ở đây: Câu hỏi của Trần Khởi My - Toán lớp 7 - Học toán với OnlineMath
ok mk nha ^^ !!!!! 536456457567568768768456457655676876234253453453453453465576
cho phân số a/b(a, b thuộc N). Giả sử a/b <1 và m thuộc N, m khác ). Chứng tỏ rằng a/b<a+m/b+m
bạn giúp mình mình sẽ giúp bạn nhé
ta có : x < y hay a/m < b/m => a < b.
So sánh x, y, z ta chuyển chúng cùng mẫu : 2m
x = a/m = 2a/ 2m và y = b/m = 2b/2m và z = (a + b) / 2m
mà : a < b
suy ra : a + a < b + a
hay 2a < a + b
suy ra x < z (1)
mà : a < b
suy ra : a + b < b + b
hay a + b < 2b
suy ra z < y (2)
:D