Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Hoàng Phúc
Xem chi tiết
Đặng Xuân Hiếu
5 tháng 4 2015 lúc 8:01

Ta có (a+b+c)(1/a+1/b+1/c) = 1 + 1 + 1 + a/b + a/c + b/a + b/c + c/a + c/b

                                         = 3 + (a/b + b/a) + (a/c + c/a) + (b/c + c/b) (1)

Vì a, b, c > 0 nên ta có (Áp dụng Côsi)

a/b + b/a \(\ge\) 2 (2)

a/c + c/a \(\ge\) 2 (3)

b/c + c/b \(\ge\) 2 (4)

Từ (1), (2), (3) và (4) suy ra

(a+b+c)(1/a+1/b+1/c) \(\ge\) 9

Dấu "=" xảy ra <=> a = b = c

nguyenminhchi
Xem chi tiết
☆MĭηɦღAηɦ❄
16 tháng 3 2020 lúc 21:23

1.: Áp dụng BĐT Cauchy-Schwarz cho 3 số dương 

\(a+b+c\ge3\sqrt[3]{abc};\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\sqrt[3]{\frac{1}{abc}}\)

\(\Rightarrow\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge3\sqrt[3]{abc}.3\sqrt[3]{\frac{1}{abc}}=9\)

Khách vãng lai đã xóa
Phan Nghĩa
Xem chi tiết
Nguyễn Minh Đăng
6 tháng 6 2020 lúc 22:02

Bài làm:

Ta có: \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\left(\frac{1}{a}+9a\right)+\left(\frac{1}{b}+9b\right)+\left(\frac{1}{c}+9c\right)-9a-9b-9c\)

\(\ge2\sqrt{\frac{1}{a}.9a}+2\sqrt{\frac{1}{b}.9b}+2\sqrt{\frac{1}{c}.9c}-9\left(a+b+c\right)\)

\(=2.3+2.3+2.3-9.1=9\)

Dấu "=" xảy ra khi: \(\hept{\begin{cases}\frac{1}{a}=9a\\\frac{1}{b}=9b\\\frac{1}{c}=9c\end{cases}\Leftrightarrow\hept{\begin{cases}a^2=\frac{1}{9}\\b^2=\frac{1}{9}\\c^2=\frac{1}{9}\end{cases}\Leftrightarrow}a=b=c=\frac{1}{3}}\)

Bài này dễ mà, lớp 8 cũng làm đc, Học tốt!!!!

Khách vãng lai đã xóa
nguyen the anh
Xem chi tiết
nguyen the anh
Xem chi tiết
Nguyen Quang Huy
Xem chi tiết
l҉o҉n҉g҉ d҉z҉
1 tháng 5 2016 lúc 16:37

Số học sinh nữ là:

         40x3/8 = 15(học sinh)

Số học sinh nam là:

           40-15=25(học sinh)

Tran Anh Tuan
Xem chi tiết
nguyen the anh
Xem chi tiết
linh
Xem chi tiết