cho các số a.b.c;d nguyên dương đôi một khác nhau t/m:
\(\frac{2a+b}{a+b}+\frac{2b+c}{b+c}+\frac{2c+d}{c+d}+\frac{2d+a}{d+a}=6\)
cmr A=abcd là 1 số chính phương
Tìm các số nguyên a,b.c sao cho :
a.b.c+a=-625
a.b.c+b=-633
a.b.c+c=-597
Câu này khó quá em mới chỉ học lớp 4 thui
Tìm các cặp số nguyên a.b.c thỏa mãn: a.b.c+a= 3 ; a.b.c+b= 5 ; a.b.c+c= 7.
tồn tại hay không các số nguyên a,b,c thỏa mãn các điều kiện a.b.c+a=1333 , a.b.c+b=1335 , a.b.c+c=1341
Tìm các số nguyên a,b,c thỏa mãn đẳng thức : a.b.c + a = 1333 ; a.b.c + b = 1335 ; a.b.c + c = 1341
Tìm các số nguyên a,b,c thỏa mãn đẳng thức : a.b.c + a = 1333 ; a.b.c + b = 1335 ; a.b.c + c = 1341
Các số tự nhiên a,b,c thỏa mãn a^2+b^2=c^2. CMR
a} a.b.c chia hết cho 3
b} a.b.c chia hết cho 5
a) - Nếu a hoặc b chia hết cho 3 => abc chia hết cho 3.
- Nếu a không chia hết cho 3 và b không chia hết cho 3 => a² chia 3 dư 1, b² chia 3 dư 1 => c² chia 3 dư 2 (vô lí)
Vậy trường hợp a không chia hết cho 3 và b không chia hết cho 3 không xảy ra => abc chia hết cho 3
b) - Nếu a hoặc b chia hết cho 5 => abc chia hết cho 5.
- Nếu a không chia hết cho 5 và b không chia hết cho 5 => a² chia 5 dư 1 hoặc 4; b² chia 5 dư 1 hoặc 4.
+ Nếu a² chi 5 dư 1, và b² chia 5 dư 1 => c² chia 5 dư 2 (vô lí)
+ Nếu a² chi 5 dư 1, và b² chia 5 dư 4=> c² chia 5 dư 0 => c chia hết cho 5.
+ Nếu a² chi 5 dư 4 và b² chia 5 dư 1 => c² chia 5 dư 0 => c chia hết cho 5.
+ Nếu a² chi 5 dư 4 và b² chia 5 dư 4 => c² chia 5 dư 3 (vô lí).
Vậy ta luôn tìm được một giá trị của a, b, c thỏa mãn abc chia hết cho 5
Các số tự nhiên a,b,c thoả mãn a^2 + b^2 = c^2
Cm :
a) a.b.c chia hết cho 3
b) a.b.c chia hết cho 5
Các số tự nhiên a,b,c thoả mãn a^2 + b^2 = c^2
Cm :
a) a.b.c chia hết cho 3
b) a.b.c chia hết cho 5
Các số tự nhiên a,b,c thoả mãn a^2 + b^2 = c^2
Cm :
a) a.b.c chia hết cho 3
b) a.b.c chia hết cho 5
CMR ko tồn tại các số tự nhiên a,b,c mà a.b.c +a =333 , a.b.c +b =335, a.b.c+c=341