cho các số khác 0 là a;b;c thõa mãn b^2=ac. Chứng minh: a/c=(a+2015b)^2/(b+2015c)^2
Gọi A là tập hợp các số tự nhiên khác 0, nhỏ hơn 30, chia hết cho 3.
B là tập hợp các số tự nhiên khác 0, nhỏ hơn 30, chia hết cho 9. Hãy xác định tập hợp A B
Tập hợp A là : {3;6;9;12;15;18;21;24;27}
Tập hợp B là : {9;18;27}
cho 3 chữ số khác nhau , và khác 0
a,lập tát cả các số 3 chữ số mỗi số là số khác nhau
b,chúng tỏ tổng các số chia được cho 224
cho a,b,c là các số khác 0 thỏa mãn: a/b=b/c= c/a và a+b+c khác 0; a= 2005. tính b,c
Gọi :
A là tập hợp các số tự nhiên khác 0, nhỏ hơn 30, chia hết cho 3 ;
B là tập hợp các số tự nhiên khác 0, nhỏ hơn 30, chia hết cho 9 ;
C là tập hợp các số tự nhiên khác 0, nhỏ hơn 30, chia hết cho 5.
a) Tìm các phần tử của B hợp C, A giao C, B giao C.
b) Hãy xác định tập hợp A hợp B, A giao B.
c) Trong ba tập hợp A, B, C tập hợp nào là tập hợp con của một trong hai tập còn lại ?
Gọi :
A là tập hợp các số tự nhiên khác 0, nhỏ hơn 30, chia hết cho 3 ;
B là tập hợp các số tự nhiên khác 0, nhỏ hơn 30, chia hết cho 9 ;
C là tập hợp các số tự nhiên khác 0, nhỏ hơn 30, chia hết cho 5.
a) Tìm các phần tử của B hợp C, A giao C, B giao C.
b) Hãy xác định tập hợp A hợp B, A giao B.
c) Trong ba tập hợp A, B, C tập hợp nào là tập hợp con của một trong hai tập còn lại ?
Cho đa thức P(x)= ax^2 +bx+c trong đó các hệ số a, b, c là các số nguyên khác 0.Chứng minh rằng nếu đa thức có 1 nghiệm là số nguyên khác 0 thì nghiệm đó là ước của c.
Cho a,b là các chữ số khác 0.CMinh M=ababab là hợp số
cho số tự nhiên p=a^xb^x, trong đó a,b là các số nguyên tố khác nhau ; x,y là các số tự nhiên khác 0.biết p^2 có đúng 15 ước số,số ước của p^3 là
Cho
A là tập hợp các số tự nhiên khác 0, nhỏ hơn 30, chia hết cho 3 ;
B là tập hợp các số tự nhiên khác 0, nhỏ hơn 30, chia hết cho 9 ;
C là tập hợp các số tự nhiên khác 0, nhỏ hơn 30, chia hết cho 5.
a) Tìm các phần tử của B hợp C, A giao C, B giao C.
b) Hãy xác định tập hợp A hợp B, A giao B.
c) Trong ba tập hợp A, B, C tập hợp nào là tập hợp con của một trong hai tập còn lại ?
cho a,b,c là các số thực khác 0. Tìm các số thực x,y,z khác 0 sao cho:
xy/ay+bx = yz/bz+cy = zx/cx+ã = x^2+y^2+z^2/a^2+b^2+c^2
`Answer:`
\(\frac{xy}{ay+bx}=\frac{yz}{bz+cy}=\frac{zx}{cx+ax}=\frac{x^2+y^2+z^2}{a^2+b^2+c^2}\left(1\right)\)
Theo đề ra, có: \(\frac{xy}{ay+bx}=\frac{yz}{bz+cy}=\frac{zx}{cx+az}\)
\(\Rightarrow\frac{xyz}{ayz+bxz}=\frac{xyz}{bxz+cxy}=\frac{xyz}{cxy+ayz}\)
\(\Rightarrow ayz+bxz=bxz+cxy=cxy+ayz\)
\(\Rightarrow\hept{\begin{cases}ayz+bxz=bxz+cxy\\ayz+bxz=cxy+ayz\\bxz+cxy=cxy+ayz\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}ayz=cxy\\bxz=cxy\\bxz=ayz\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}az=cx\\bz=cy\\bx=ay\end{cases}}\left(2\right)\)
Thế (2) và (1): \(\frac{xy}{2ay}=\frac{yz}{2bz}=\frac{xz}{2cx}=\frac{x^2+y^2+z^2}{a^2+b^2+c^2}\)
\(\Rightarrow\frac{x}{2a}=\frac{y}{2b}=\frac{z}{2c}=\frac{x^2+y^2+z^2}{a^2+b^2+c^2}\left(3\right)\)
\(\Rightarrow\frac{x^2}{4a^2}=\frac{y^2}{4b^2}=\frac{z^2}{4c^2}=\frac{\left(x^2+y^2+z^2\right)^2}{\left(a^2+b^2+c^2\right)^2}=\frac{x^2+y^2+z^2}{4a^2+4b^2+4c^2}\)
\(\Rightarrow\frac{x^2+y^2+z^2}{a^2+b^2+c^2}=\frac{1}{4}\)
Thế (3) vào (2): \(\frac{x}{2a}=\frac{y}{2b}=\frac{z}{2c}=\frac{1}{4}\)
\(\Rightarrow\hept{\begin{cases}x=\frac{a}{2}\\y=\frac{b}{2}\\z=\frac{c}{2}\end{cases}}\)