cho a+2015/a-2015 = b+2016/b-2016 ( a khác 5 ; b khác 6) .chứng minh rằng a/b=2015/2016
ta có \(\frac{a+2015}{a-2015}=\frac{b+2016}{b-2016}\)
\(\Rightarrow\frac{\left(a+2015\right)-\left(a-2015\right)}{a-2015}=\frac{\left(b+2016\right)-\left(b-2016\right)}{b-2016}\)
\(\Rightarrow\frac{2015.2}{a-2015}=\frac{2016.2}{b-2016}\)
\(\Rightarrow\frac{2015}{a-2015}=\frac{2016}{b-2016}\)
\(\Rightarrow\frac{a-2015}{2015}=\frac{b-2016}{2016}\)
\(\Rightarrow\frac{a}{2015}-1=\frac{b}{2016}-1\)
Suy ra ĐPCM
Cho a,b,c là số dương . Chứng minh:s^2016+b^2016+c^2016>(b+c×a^2015)/2+(c+a×b^2015)/2+(a+b×a^2015)/2
So sánh A và B :
A = 2015 . 2016 + 2017 / 2015 . 2016 + 2016
B = 2015 . 2016 + 2018 / 2015 . 2016 + 2017
Đặt 2015.2016+2016=n
suy ra A=(n+1)/n và B=(n+2)/(n+1)
Ta có A - B=(n+1)/n -(n+2)/(n+1)=((n+1)2-n(n+2))/n(n+1)=(n2+2n+1-n2-2n)/n(n+1)=1/n(n+1)
Vì A-B lớn hơn 0 nên A>B
Cho A= 2015/2016+2016/2017;B=2015+2016/2016+2017.Không quy đồng hãy so sánh A và B
Cho a,b,c la cac so duong .Chung minh rang:
a^2016+b^2016+c^2016 >hoac=(b+c).a^2015/2+(c+a).b^2015/2+(a+b).c^2015/2
Cho A = 2015 phần 2016 + 2016 phần 2017 và B = 2015 + 2016 phần 2016 + 2017 . Hãy so sánh A và B
\(\frac{2015}{2016}+\frac{2016}{2017}>\frac{\left(2015+2016\right)}{\left(2016+2017\right)}=\frac{2015}{2016+2017}+\frac{2016}{2016+2017}\)
5/ So sánh : A= 20152016 + 20152015 và B= 20162016
So sánh: a> A= 2015+2016 / 2016+2017 và B= 2015 / 2016 + 2016 / 2017
b> M=2015^35+1 / 2015^34+1 va N= 2015^34+1 / 2015^33+1
c> P= 2015^99+5 / 2015^99-1 va Q= 2015^99 +1 /2015^99
\(A=\frac{2015+2016}{2016+2017}=\frac{2015}{2016+2017}+\frac{2016}{2016+2017}\)
\(B=\frac{2015}{2016}+\frac{2016}{2017}\)
vì \(\frac{2015}{2016+2017}<\frac{2015}{2016}\)và \(\frac{2016}{2016+2017}<\frac{2016}{2017}\)
nên A <B
So sánh a và b biết a=2015^2016-2015^2015 ,b=2015^2017-2015^2016