Các bạn ơi cho mình hỏi câu này:
Cho a/b=b/c=c/d và a+b+c khác 0; a=2005. Tính b,c.
Các bạn ơi cho mình hỏi:
Cho a,c,b khác 0 và phân biệt t/m: a^3 +b^3 +c^3=3abc
Tính M= ab^2/a^2+b^2-c^2 + bc^2/b^2+c^2-a^2 + ca^2/ c^2+a^2-b^2
CẢM ƠN CÁC BẠN NHIỀU!!!
\(a^3+b^3+c^3=3abc\Rightarrow a^3+b^3+c^3-3abc=0\)
\(a^3+b^3+c^3-3abc=a^3+3a^2b+3ab^2+b^3+c^3-3a^2b-3ab^2-3abc\)
\(=\left(a+b\right)^3+c^3-3ab\left(a+b+c\right)=\left(a+b+c\right)\left(\left(a+b\right)^2-c\left(a+b\right)+c^2\right)\)
\(-3ab\left(a+b+c\right)=\left(a+b+c\right)\left(\left(a+b\right)^2-c\left(a+b\right)+c^2-3ab\right)\)
\(=\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2-3ab\right)\)
\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)\Rightarrow\hept{\begin{cases}a+b+c=0\\a^2+b^2+c^2-ab-ac-bc=0\end{cases}}\)
\(\left(a-b\right)^2>=0\Rightarrow a^2-2ab+b^2>=0\Rightarrow a^2+b^2>=2ab\)
tương tự \(a^2+c^2>=2ac;b^2+c^2>=2bc\)
\(\Rightarrow a^2+b^2+a^2+c^2+b^2+c^2>=2ab+2ac+2bc\Rightarrow2\left(a^2+b^2+c^2\right)>=2\left(ab+ac+bc\right)\)
\(\Rightarrow a^2+b^2+c^2.=ab+ac+bc\)dấu = xảy ra khi a=b=c
mà nếu \(a^2+b^2+c^2-ab-ac-bc=0\Rightarrow a^2+b^2+c^2=ab+ac+bc\Rightarrow a=b=c\)
th1:a+b+c=0
\(\Rightarrow a+b=-c;a+c=-b;b+c=-a\)
\(M=\frac{ab^2}{a^2+b^2-c^2}+\frac{bc^2}{b^2+c^2-a^2}+\frac{ca^2}{c^2+a^2-b^2}=\frac{ab^2}{a^2+b^2-\left(-c\right)^2}+\frac{bc^2}{b^2+c^2-\left(-a\right)^2}+\frac{ca^2}{c^2+a^2-\left(-b\right)^2}\)
\(=\frac{ab^2}{a^2+b^2-\left(a+b\right)^2}+\frac{bc^2}{b^2+c^2-\left(b+c\right)^2}+\frac{ca^2}{c^2+a^2-\left(c+a\right)^2}\)
\(=\frac{ab^2}{a^2+b^2-a^2-2ab-b^2}+\frac{bc^2}{b^2+c^2-b^2-2bc-c^2}+\frac{ca^2}{c^2+a^2-c^2-2ac-a^2}\)
\(=\frac{ab^2}{-2ab}+\frac{bc^2}{-2bc}+\frac{ca^2}{-2ac}=\frac{b}{-2}+\frac{c}{-2}+\frac{a}{-2}=\frac{a+b+c}{-2}=\frac{0}{-2}=0\)
th2:a=b=c tự lm nhá
1.cho tỉ lệ thức: a+b+c/a+b-c=a-b+c/a-b-c trong đó b khác 0. cmr:c=0
2.cmr ta có tỉ lệ thức a/b=c/d nếu có một trong các đẳng thức sau:
(a+b+c+d)(a-b-c+d)=(a-b+c-d)(a+b-c-d)
GIÚP MÌNH ĐI CÁC BẠN ƠI!
Cho 3 Chữ Số a,b,c Khác Nhau Và Khác 0 . Tính Tổng Của Các Số Có 2 Chữ Số Khác Nhau Được Lập Từ 3 Chữ Số Đã Cho Biết a+b+c=8 ? Câu Hỏi Này Dành Cho Những Bạn Gái . Bạn Gái Nào Trả Lời Nhớ Kết Bạn Với Mình Nha .
cho a/b=b/c=c/d và a+b+c khác 0
a=2003.tính b và c
nhờ các bạn bày cho mình bài toán này với
Sửa lại đề :
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{a+b+c}=1\)
\(\cdot\frac{a}{b}=1\Rightarrow a=b\)
\(\cdot\frac{b}{c}=1\Rightarrow b=c\)
\(\Leftrightarrow a=b=c=2003\)
Vậy ...
a/b=c/a=c/a
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:a/b=b/c=c/a=a+b+c/a+b+c=1a/b=1suy ra a=b;b/c=1suy ra b=c suy ra a=b=c=2003
Xong rồi đấy
Câu 1 :Cho tỉ lệ thức a/b=c/d với b,c,d khác 0và c khác -d
Cmr: a+b/b=c+d/d
Câu 2: cho tỉ lệ thức a/b=c/d với b,c,d khác 0 và a khác -b,c khác -d.
Cmr: a/a+b=c/c+d
Câu 3: cho a+b/a-b=c+d/c-d(a,b,c,d khác 0 và a khác b, c khác âm dương c)
Cmr a/b=c/d
Câu 4: cho tỉ lệ thức a/b=c/d với a,b,c,d khác 0
Cmr ac/bd=a^2+c^2 /b^2+d^2
Câu 5: cho tỉ lệ thức a/b=c/d với a,b,c,d khác 0 và c khác d
Cmr: (a-b)^2/(c-d)^2=ab/cd
Câu 6: cho tỉ lệ thức a/b=c/d với a,b,c,d khác 0 và khác-d
Cmr: (a+b)^2014/(c+d)^2014=a^2014+b^2014/c^1014+d^2014
Câu 7:cho a/c=c/d với a,b,c khác 0
Cmr a/b=a^2+c^2/b^2+d^2
Câu 8: cho a/c=c/d với a,b,c khác 0
Cmr b-a/a=b^2-a^2/a^2+c^2
Câu 9:cho tỉ lệ thức a/b=c/d với a,b,c,d khác 0 và a khác âm dương 5/3b; khác âm dương 5/3d khác 0
Cmr: các tỉ lệ thức sau: 3a+5b/3a-5b=3c+5d/3c-5d
Câu 10: cho tỉ lệ thức a/b=c/d với a,b,c,d khác 0
Cmr: 7a^2+5ac/7b^2-5ac=7a^2+5bd/7b^2-5bd
Câu 1
Ta có : \(\frac{a}{b}=\frac{c}{d}=>\left(\frac{a}{b}+1\right)=\left(\frac{c}{d}+1\right)\left(=\right)\frac{a+b}{b}=\frac{c+d}{d}\)
=> ĐPCM
Câu 2
Ta có \(\frac{a}{b}=\frac{c}{d}=>\frac{b}{a}=\frac{d}{c}=>\left(\frac{b}{a}+1\right)=\left(\frac{d}{c}+1\right)\left(=\right)\frac{b+a}{a}=\frac{d+c}{c}=>\frac{a}{b+a}=\frac{c}{d+c}\)
=> ĐPCM
Câu 3
Câu 3
Ta có \(\frac{a+b}{a-b}=\frac{c+d}{c-d}\)(=) (a+b).(c-d)=(a-b).(c+d)(=)ac-ad+bc-bd=ac+ad-bc-bd(=)-ad+bc=ad-bc(=) bc+bc=ad+ad(=)2bc=2ad(=)bc=ad=> \(\frac{a}{b}=\frac{c}{d}\)
=> ĐPCM
Câu 4
Đặt \(\frac{a}{b}=\frac{c}{d}=k\)
\(=>\hept{\begin{cases}a=bk\\c=dk\end{cases}}\)
Ta có \(\frac{ac}{bd}=\frac{bk.dk}{bd}=k^2\left(1\right)\)
Lại có \(\frac{a^2+c^2}{b^2+d^2}=\frac{b^2k^2+c^2k^2}{b^2+d^2}=\frac{k^2.\left(b^2+d^2\right)}{b^2+d^2}=k^2\left(2\right)\)
Từ (1) và (2) => ĐPCM
Mày là thằng anh tuấn lớp 7c trường THCS yên lập đúng ko
Cho \(\frac{a}{b}\)=\(\frac{b}{c}\)=\(\frac{c}{a}\);a+b+c khác 0;c=2020.Tính a và b
GIÚP MÌNH VỚI CÁC BẠN ƠI
Có \(\frac{a}{b}=\frac{b}{c}=\frac{c}{a};a;b;c\ne0;c=2020\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có :
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=\frac{a+b+c}{a+b+c}=1\). Từ đó ta có
\(a=b=c\). Mà \(c=2020\Leftrightarrow a=b=2020\)
Vậy \(a=b=2020\)
cho a/a+b =b/b+c =c/c+a
tính tổng a+b/2c +b+c/3a +c+a/4b ( với abc khác 0 và các mẫu đều khác 0)
các bạn giúp mình nhé
từ \(\frac{a}{a+b}=\frac{b}{b+c}=\frac{c}{c+a}\)
\(\Rightarrow\)\(\frac{a}{a+b}=\frac{b}{b+c}=\frac{c}{c+a}=\frac{a+b+c}{\left(a+b\right)+\left(b+c\right)+\left(c+a\right)}=\frac{a+b+c}{2.\left(a+b+c\right)}=\frac{1}{2}\)
vì a,b,c khác 0 và các mẫu đều khác 0 nên a = b = c
\(\Rightarrow\frac{a+b}{2c}+\frac{b+c}{3a}+\frac{c+a}{4b}=1+\frac{2}{3}+\frac{1}{2}=\frac{13}{6}\)
cho a^2+b^2/c^2+d^2=ab/cd với a,\b,c,d khác 0 và c không bằng +-d chứng minh a/b=d/c
mọi người ơi giúp mình với
các bạn giúp mình bài này với, sáng mai mình cần rồi, pls
a) cho a/b=c/d (c khác +-3/5d)
chứng minh: 5a+3b/5c+3d=5a-3b/5c-3d
b)cho a/b=c/d khác +-1 (c khác 0)
chứng minh: (a-b/c-d)=ab/cd
giúp mik với, ai co câu trả lời sớm nhất mik sẽ tick cho , thank