Cho F(x) là một đa thức bậc 4. Biết rằngF(1)=F(-1);F(2)=F(-2)
Chứng minh rằng F(x)=F(-x) với mọi giá trị của x .
Cho đa thức bậc ba \(f\left(x\right)\) với hệ số của x3 là một số nguyên dương và biết \(f\left(5\right)-f\left(3\right)=2017\) .Chứng minh rằng \(f\left(7\right)-f\left(1\right)\) là hợp số
Tìm đa thức bậc hai biết f(x) - f(x-1) = x . Từ đó áp dụng tính tổng S = 1 + 2 + 3 + ... + n
CHU ANH TUẤN nếu như biết làm rồi thì giúp bạn cái !!!
Chứ lại sĩ như thế à !!!
Như vậy ko tốt đâu !!!
P/S : Mik sẽ chịu đủ gạch đá từ bạn :(
Viết 3 đa thức g(x), h(x), k(x) lần lượt có bậc một, bậc hai, bậc ba chỉ có một nghiệm là 1
Đa thức P(x) bậc 4 có hệ số bậc cao nhất là 1. Biết P(1)=0; P(3)=0; P(5)=0
Tính giá trị của biểu thức: Q= P(-2) + 7P(6)
. Ta có: P(1)= 0, P(3)= 0, P(5)= 0 => 1,3,5 là nghiệm của pt, nên P(x) chứa nhân tử: (x-1) ; (x-3) ; (x-5)
. Vì P(x) bậc 4, có hệ số bậc cao nhất là 1 nên P(x) có dạng: \(\left(x-1\right)\left(x-3\right)\left(x-5\right)\left(x-a\right)\)
. \(Q=P\left(-2\right)+7P\left(-6\right)\) = \(\left(-2-1\right)\left(-2-3\right)\left(-2-5\right)\left(-2-a\right)+7\left(6-1\right)\left(6-3\right)\left(6-5\right)\left(6-a\right)\)
\(=210+105a+630-105a\) \(=840\)
. Vậy \(Q=840\)
tam thức bậc hai là đa thức có dạng f(x) = ax2 + bx + c với a, b, c là hằng số, a ≠ 0. Hãy xác định các hệ số a, b biết f(1) = 2; f(3) = 8
\(a\ne0\)
\(f\left(1\right)=2\)
\(\Rightarrow a+b=2\)
\(f\left(3\right)=8\)
\(\Rightarrow3a+b=8\)
\(\Rightarrow2a+a+b=8\)
\(\Rightarrow2a=6\)
\(\Rightarrow a=3\)
\(\Leftrightarrow b=-1\)
Vậy đa thức đã cho là \(f\left(x\right)=3x-1\)
a≠0
ƒ (1)=2
⇒a+b=2
ƒ (3)=8
⇒3a+b=8
⇒2a+a+b=8
⇒2a=6
⇒a=3
⇔b=−1
Vậy đa thức đã cho là ƒ (x)=3x−1
Bài 1 : Cho \(f\left(x\right)=x^3-2ax+b\). Tìm a,b biết đa thức có hai nghiệm là f(1)=-1 và f(0)=2
Bài 2 . Cho \(f\left(x\right)=x^3-2ax+b\). TÌm a,b biết đa thức có hai nghiệm là 0 và 3
cho đa thức f(x)=ax^2+bx+c. Chứng minh rằng nếu a+b+c=0 thì x=1 là một nghiệm của đa thức f(x)
Với x-1 ta có:
\(f\left(x\right)=a+b+c=0\)
Vậy x 1 nghiệm của đa thức f(x)
CHO đa thức f(x)=ax^2+(a+b)*x+b. Tìm a và b biết rằng f(x) nhận -5/4 là nghiệm và khi chia cho đa thức (x-2) thì có dư là 39
thay x=-5/4 vào=>f(-5/4)=0
chia x-2 dư 39 =>f(2)=39
đc hệ pt bậc nhất 2 ẩn => tìm đc a và b
Tìm đa thức bậc 2 sao cho f(x)-f(x-1)=x