1.1. Mệnh đề sau đúng hay sai, vì sao: “∀ n ∈ N, 2n + 1 là số nguyên tố”
1.2. Cho biết CRA = (-3;4], B = [-4; 1]. Hãy tìm các tập hợp A ∪ B, A ∩ B.
giúp e với
với n là sô nguyên dương, p là sô nguyên tố, nếu n^2 chia hết cho p thì n chia hết cho p. Mệnh đề đảo của mệnh đề trên là đúng hay sai, vì sao
Ta có :
\(n^2\) chia hết cho p nghĩa là \(n.n\) chia hết cho p do đó n chia hết cho p
Vậy mệnh đề đẻo lại là n chia hết cho p thì n2 chia hết cho p là đúng
\(tan\alpha=2\sqrt{2}\Rightarrow cot\alpha=\frac{1}{2\sqrt{2}}\Rightarrow cot^2\alpha=\frac{1}{8}\Rightarrow1+cot^2\alpha=1+\frac{1}{8}=\frac{9}{8}\). Áp dụng công thức
\(1+cot^2\alpha=\frac{1}{sin^2\alpha}\)(bạn tự chứng minh bằng cách vận dụng định nghĩa các tỉ số lượng giác trong tam giác vuông).
\(\Rightarrow sin^2\alpha=\frac{1}{1+cot^2\alpha}=\frac{1}{\frac{9}{8}}=\frac{8}{9}\Rightarrow sin\alpha=\frac{2\sqrt{2}}{3}\)
" Với mọi số tự nhiên n, n(n+1)(2n+1) chia hết cho 6 " mệnh đề này đúng hay sai? Vì sao?
Đúng xét 3 TH
TH1: n chia hết 3 suy ra n(n+1)(2n+1) chia hết cho 3
TH2 : n : 3 dư 1 suy ra n =3k+1 suy ra 2n+1=6k+2+1 chia hết cho 3 suy ra n(n+1)(2n+1) chia hết cho 3
TH3 : n : 3 dư 2 suy ra n =3k+2 suy ra n+1=3k+3 chia hết cho 3 suy ra n(n+1)(2n+1) chia hết cho 3
Hà Văn Việt sai rồi vì nếu n=0 thì 0 chia hết cho 6(đúng)
Đúng
Ta có n(n+1) là tích của 3 số tự nhiên liên tiếp
=> n(n+1) chia hết cho 2 => n(n+1)(2n+1) chia hết cho 2 (1)
Ta lại có: n(n+1)(2n+1)=n(n+1)(n-1+n+2)=(n-1)n(n+1)+n(n+1)(n+2)
(n-1)n(n+1) là tích của 3 số tự nhiên liên tiếp => (n-1)n(n+1) chia hết cho 3 (2)
n(n+1)(n+2) là tích của 3 số tự nhiên liên tiếp => n(n+1)(n+2) chia hết cho 3 (3)
Từ (2) và (3) => (n-1)n(n+1)+n(n+1)(n+2) chia hết cho 3 hay n(n+1)(2n+1) chia hết cho 3(4)
Mà (2;3)=1 (5)
Từ (1)(4) và (5) => n(n+1)(2n+1) chia hết cho 6 với mọi n là số tự nhiên
Vậy,mệnh đề đúng
Cho hai số nguyên dương a,b . Biết rằng trong bốn mệnh đề P,Q,R,S dưới đây chỉ có duy nhất một mệnh đề sai:
P) a= 2b + 5
Q) a+1 chia hết cho b
R) a+b chia hết cho 3
S) a+7b là số nguyên tố
a) Mệnh đề R nói trên là mệnh đề đúng hay sai ? Vì sao?
b) Tìm tất cả các cặp số nguyên dương a,b thỏa mản ba mệnh đè đúng ( trong bốn mệnh đề trên)
tuyeenr ban trai
lương:tích
điều kiện: phải có ảnh chân dung
Tìm a;b thuộc N sao;sao cho trong 4 mệnh đề sau có 3 mệnh đề đúng một mệnh đề sai
a)a+b chia hết cho b
b)a=2b+5
c)a+b chia hết cho 3
d)a+7b là số nguyên tố
Sao bạn Nguyễn Tuấn Anh không làm ra luôn đi
Tìm các stn m,n nếu trong 4 mệnh đè sau có 1 mệnh đề sai
1. m+1 chia hết cho n
2. m=2n+5
3.m+n chia hết cho 3
4. m+7n là số nguyên tố
Hãy cho biết các mệnh đề sau đúng hay sai? Giải thích và viết mệnh đề phủ định của nó.
\(\forall n\in N\left(2n-1\right)^2-1\)chia hết cho 4
Mệnh đề đúng.
Vì \(\left(2n-1\right)^2-1=4n^2-4n+1-1=4\left(n^2-n\right)⋮4,\forall n\inℕ\)
Phủ định: \(\exists n\inℕ,\left(2n-1\right)^2-1⋮̸4\)
\(\left(2n-1\right)^2-1\)
\(=4n^2-4n+1-1\)
\(=4n^2-4n\)
\(=4n\left(n-1\right)⋮4\forall n\)
Vậy mệnh đề trên đúng
Mệnh đề phủ định của mệnh đề trên
\(\exists x\in R:\left(2n-1\right)^2-1\) không chia hết cho 4
Cho hai số nguyên dương a va b . biết rằng trong 4 mệnh đề P,Q,R,S dưới đây chỉ có duy nhất một mệnh đề sai:
P) a=2b+5 Q) a+1 chia hết cho b
R) a+b chia hết cho 3 S) a+7b là số nguyên tố
a) mệnh đề R nói trên là mệnh đề đúng hay sai ? vì sao?
cho 3 mệnh đề sau, với n là số tự nhiên
(1) n+ 8 là số chính phương
(2) chữ số tận cùng của n là 4
(3) n-1 là số chính phương
biết hai mệnh đề đúng và 1 mệnh đề sai. hãy xác định mệnh đề nào đúng nào sai
ta thấy 1 số chính phương không bao giờ có đuôi là 2;3;7;8
Mà nếu mệnh đề (2) đúng thì n+8=...2 => mệnh đề (1) sai và n-1=...3 => mệnh đề (3) sai
Nhưng chỉ có 1 mệnh đề sai nên chỉ có mệnh đề (2) là thỏa mãn
Vậy n+8 và n+1 là số chính phương
\(\Rightarrow\left(n+8\right)-\left(n-1\right)=9\)
\(\Leftrightarrow\left(n+8\right)^2-\left(n-1\right)^2=9^2\)
\(\Leftrightarrow\left[\left(n+8\right)-\left(n-1\right)\right]\left[\left(n+8\right)+\left(n-1\right)\right]=9^2\)
\(\Leftrightarrow9\left(2n+7\right)=9^2\)
\(\Leftrightarrow2n-7=9\)
\(\Leftrightarrow n=8\)
Vậy n=8 thì mới thỏa mãn mệnh đề (1) và (3)
số có dạng 2^2n+1 - 1 là số nguyên tố. điều đó đúng hay sai vì sao
Sai. Vì2 \(^2\)n+1-1=2\(^2\)n. 2\(^2\)=4 và 4.n thì luôn luôn ra kết quả là hợp số