Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Vũ Nguyễn Việt Anh
Xem chi tiết
N.T.M.D
Xem chi tiết
Vananh11062001
Xem chi tiết
Phạm Thế Mạnh
4 tháng 1 2016 lúc 22:34

\(n\left(n+1\right)\left(n+2\right)\left(n+3\right)+1=\left(n^2+3n\right)\left(n^2+3n+2\right)+1=\left(n^2+3n+1\right)^2\)là chính phương
mà \(n\left(n+1\right)\left(n+2\right)\left(n+3\right)+2\) cũng là chính phương 
\(\Leftrightarrow\left(n^2+3n+1\right)^2=0\)
pt vô nghiệm

Vananh11062001
4 tháng 1 2016 lúc 22:32

ok pạn Phạm thế mạnh

Nguyễn Quốc Khánh
4 tháng 1 2016 lúc 22:35

ta có

\(n\left(n+1\right)\left(n+2\right)\left(n+3\right)+2\)

\(=\left[n\left(n+3\right)\right].\left[\left(n+1\right)\left(n+2\right)\right]+2\)

\(\left(n^2+3n\right)\left(n^2+3n+2\right)+2\)

Đặt n^2+3n+1=a

=>(a-1)(a+1)+2=a^2-1+2=a^2+1

=>Sai đề

Nếu thấy câu trả lời của mình đúng thì tick nha bạn,cảm ơn nhiều.

Phạm Thọ Giang
Xem chi tiết
phạm phương anh
17 tháng 2 2018 lúc 21:42

khos quá

Bui Cao Bao Ha
27 tháng 10 2018 lúc 17:11

tui cũng học lớp 6 nhưng bài này khó quá

Trần Thanh Phương
27 tháng 10 2018 lúc 17:18

Tham khảo :

Câu hỏi của Nguyễn Hoàng Nguyên Bảo - Toán lớp 6 - Học toán với OnlineMath

nguyễn tùng dương
Xem chi tiết
Yuu Shinn
9 tháng 2 2016 lúc 14:51

đặt s(n) = 1! + 2! + ... + n! 
s(1) = 1 và s(3) = 9 là số chính phương. 
s(2) = 3 và s(4) = 33 không là số chính phương. 
Với n ≥ 5 có n! chia hết cho 10 - do trong tích có 2 thừa số là 2 và 5 - nên n! tận cùng bằng 0 
Vậy với n ≥ 5 có s(n) = s(4) + 5! + ... + n! tận cùng bằng 3. Do số chính phương không tận cùng bằng 3 (chỉ tận cùng bằng 0, 1, 4, 5, 6, 9) nên với n ≥ 5 có s(n) không là số chính phương. 
Vậy chỉ với n = 1 và n = 3 tổng đã cho là số chính phương.

Nguồn: yahoo

Bui Chi Dung 1
9 tháng 2 2016 lúc 14:57

n=1 hoac n=3

Nakamori Aoko
Xem chi tiết
Dương Lan Hương
Xem chi tiết
Nguyễn Hồng Mi
Xem chi tiết
hellokute6a1
Xem chi tiết