Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
cao ngoc khanh linh
Xem chi tiết
Nguyễn Trung Thành
20 tháng 10 2019 lúc 16:44

a, phương trình (=) 2x-4xy+2y=0 (=) 2x.(1-2y)+2y=0 (=) -2x.(2y-1)+(2y-1)=-1 (=) (2y-1)(1-2x)=-1  phần còn lại tự giải ( gợi ý: xét các trường hợp)

b,tương tự (y+1).(x-1)=3 tự giải nhé

chúc bn học tốt ( chỗ nào chưa hiểu hỏi ngay nhé)

Khách vãng lai đã xóa
Hàn Thiên Băng
Xem chi tiết
hoaan
Xem chi tiết
Hoàng Thu Huyền
Xem chi tiết
Hoàng Thu Huyền
Xem chi tiết
Bui Đưc Trong
1 tháng 2 2018 lúc 17:40

treen mạng không có à ????

lolang

Trịnh Hoàng Đông Giang
Xem chi tiết
Phước Nguyễn
9 tháng 4 2016 lúc 10:49

Bài  \(1a.\)  Tìm  \(x,y,z\)  biết \(x^2+4y^2=2xy+1\)   \(\left(1\right)\)  và  \(z^2=2xy-1\)  \(\left(2\right)\)

Cộng  \(\left(1\right)\)  và  \(\left(2\right)\)  vế theo vế, ta được:

\(x^2+4y^2+z^2=4xy\)

\(\Leftrightarrow\)  \(x^2-4xy+4y^2+z^2=0\)

\(\Leftrightarrow\)  \(\left(x-2y\right)^2+z^2=0\)

Do  \(\left(x-2y\right)^2\ge0\)  và  \(z^2\ge0\)  với mọi  \(x,y,z\)

nên để thỏa mãn đẳng thức trên thì phải đồng thời xảy ra  \(\left(x-2y\right)^2=0\)  và  \(z^2=0\)

\(\Leftrightarrow\)  \(^{x-2y=0}_{z^2=0}\)  \(\Leftrightarrow\)  \(^{x=2y}_{z=0}\)

Từ  \(\left(2\right)\), với chú ý rằng  \(x=2y\)  và  \(z=0\), ta suy ra:

\(2xy-1=0\)  \(\Leftrightarrow\)  \(2.\left(2y\right).y-1=0\)  \(\Leftrightarrow\)  \(4y^2-1=0\)  \(\Leftrightarrow\)  \(y^2=\frac{1}{4}\)  \(\Leftrightarrow\)  \(y=\frac{1}{2}\)  hoặc  \(y=-\frac{1}{2}\)

\(\text{*)}\)  Với  \(y=\frac{1}{2}\) kết hợp với \(z=0\) \(\left(cmt\right)\)  thì  \(\left(2\right)\)  \(\Rightarrow\)  \(2.x.\frac{1}{2}-1=0\)  \(\Leftrightarrow\)  \(x=1\)

\(\text{*)}\)  Tương tự với trường hợp  \(y=-\frac{1}{2}\), ta cũng dễ dàng suy ra được \(x=-1\)

Vậy, các cặp số  \(x,y,z\)  cần tìm là  \(\left(x;y;z\right)=\left\{\left(1;\frac{1}{2};0\right),\left(-1;-\frac{1}{2};0\right)\right\}\)

\(b.\)  Vì  \(x+y+z=1\)  nên  \(\left(x+y+z\right)^2=1\)

\(\Leftrightarrow\)  \(x^2+y^2+z^2+2\left(xy+yz+xz\right)=1\)  \(\left(3\right)\)

Mặt khác, ta lại có  \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\)  \(\Rightarrow\)  \(xy+yz+xz=0\)  \(\left(4\right)\) (do  \(xyz\ne0\))

Do đó,  từ  \(\left(3\right)\) và \(\left(4\right)\)  \(\Rightarrow\)  \(x^2+y^2+z^2=1\)

Vậy,  \(B=1\)

Nguyền Thừa Huyền
9 tháng 4 2016 lúc 9:42

1a) x=1, y=1/2, z=0

Phước Nguyễn
9 tháng 4 2016 lúc 11:06

Ta có:

\(A=\frac{1}{x^2}+\frac{1}{y^2}=\frac{x^2+y^2}{\left(xy\right)^2}=\frac{x^2+y^2}{\left(x+y\right)^2}\)  (do  \(x+y=xy\))  \(\left(5\right)\)

Dễ dàng chứng minh được với mọi  \(x,y\in R\), ta luôn có:

\(\left(x+y\right)^2\le2\left(x^2+y^2\right)\)  \(\left(\text{*}\right)\)

Thật vậy, áp dụng bất đẳng thức Bunyakovsky cho hai bộ số  \(\left(1^2+1^2\right)\)  và  \(\left(x^2+y^2\right)\), ta được:

\(\left(1^2+1^2\right)\left(x^2+y^2\right)\ge\left(1.x+1.y\right)^2=\left(x+y\right)^2\)

Do đó,  \(2\left(x^2+y^2\right)\ge\left(x+y\right)^2\), hay  \(\left(x+y\right)^2\le2\left(x^2+y^2\right)\)  \(\left(đpcm\right)\)

Vậy, bất đẳng thức \(\left(\text{*}\right)\)  hiển nhiên đúng với mọi  \(x,y\in R\), tức bđt  \(\left(\text{*}\right)\)  được chứng minh.

Dấu  \("="\)  xảy ra  \(\Leftrightarrow\)  \(\frac{1}{x}=\frac{1}{y}\)  \(\Leftrightarrow\)  \(x=y\)  

Khi đó,  từ  \(\left(\text{*}\right)\)  \(\Rightarrow\)  \(\frac{1}{\left(x+y\right)^2}\ge\frac{1}{2\left(x^2+y^2\right)}\)  (do  hai vế của bđt  \(\left(\text{*}\right)\)  cùng dấu  \(\left(+\right)\))

nên  \(\frac{x^2+y^2}{\left(x+y\right)^2}\ge\frac{x^2+y^2}{2\left(x^2+y^2\right)}=\frac{1}{2}\)  (vì  \(x^2+y^2>0\)  với mọi  \(x,y\in R\) và  \(x,y\ne0\))  \(\left(6\right)\)

\(\left(5\right);\)  \(\left(6\right)\)  \(\Rightarrow\)  \(A\ge\frac{1}{2}\)

Dấu  \("="\)  xảy ra  \(\Leftrightarrow\)  \(^{x+y=xy}_{x=y}\)  \(\Leftrightarrow\)  \(x=y=2\)

Vậy,  GTNN của  \(A=\frac{1}{2}\)

Cao Chi Hieu
Xem chi tiết
Ben 10
2 tháng 9 2017 lúc 21:12

 x+y=xy suy ra x+y-xy = 0 
suy ra (x-xy)+y -1 = -1 
suy ra x(1-y)-(1-y)=-1 
suy ra (1-y)(x-1)=-1 
suy ra (1-y) va (x-1) thuoc uoc kua -1 
suy ra 1-y = 1 va x-1=-1 
hoac 1-y=-1 va x-1 =1 
suy ra y=0 va x bag 0 
hoac y =2 va x=2 
vay co 2 cap x,y thoa man la(0;0) va (2;2)

Oanh Trần
Xem chi tiết
Ngọc Anhh
Xem chi tiết
Thieu Gia Ho Hoang
12 tháng 2 2016 lúc 9:25

bai toan nay khó

Hoàng Thu Ngân
Xem chi tiết
Vũ Thành Đạt
11 tháng 4 2018 lúc 15:57

xy-x-y=2

xy-x-y-1=1

x(y-1)-y-1=1

x(y-1)-(y+1)=1

x(y-1)-(y-1)-2=1

(y-1)(x-1)=3

y-1=3/x-1

y=3/x-1+1          ĐK(x khác 1)

Để y là 1 số khi và chỉ khi 3 chia hết cho x-1

=>x-1 thuộc (-3;-1;1:3)

Lập bảng

x-1-3-113
x-2024
y0-242

Vì x;y thuôc Z;x khác 1

Vậy (x;y)thuộc (-2;0);(0;-2);(2;4);(4;2)

Phần b làm tương tự

Bye