Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nuyễn Thảo Kha
Xem chi tiết
Lê Minh Tú
2 tháng 12 2017 lúc 20:49

\(PT\Leftrightarrow x^2=2y^2+1\). Vì x2 là số chính phương lẻ.

\(\Rightarrow x^2=2y^2+1\equiv1\left(mod4\right)\)mà y số nguyên.

\(\Rightarrow y=2,x=3\)

Nuyễn Thảo Kha
3 tháng 12 2017 lúc 16:36

Lê Minh Tú cảm ơn bạn nhiều nhé !

Nguyễn danh hùng
Xem chi tiết
Lê Hà Anh
Xem chi tiết
Nguyễn Thục Hiền
Xem chi tiết
Nguyễn Đặng Linh Nhi
30 tháng 12 2017 lúc 16:16

a) (x+1)+(x+2)+(x+3)+........+(x+100)=5750

(x+x+...+x)+(1+2+3+...+100)=5750

(x.100)+(1+100).100:2=5750

(x.100)+5050=5750

x.100=5750-5050

x.100=700

x       =700:100

x       = 7

Vậy x = 7 

c)  trước hết cần chú ý rằng mọi số tự nhiên đều viết được dưới 1 trong 3 dạng: 3k, 3k +1 hoặc 3k +2(với k là số tự nhiên) 

+) Nếu p = 3k vì p là số nguyên tố nên k = 1 => p = 3 => p+10 = 13 là số nguyên tố; p+14 = 17 là số nguyên tố (1) 

+) Nếu p = 3k +1 => p +14 = 3k+1+14 = 3k+15 = 3(k+5) chia hết cho 3 và lớn hơn 3 nên là hợp số (loại vì không thỏa mãn điều kiện đề bài) (2) 

+) Nếu p=3k+2 => p+10 = 3k+2+10 = 3k+12 = 3(k+4) chia hết cho 3 và lớn hơn 3 nên là hợp số (loại vì không thỏa mẫn điều kiện đề bài) (3) 

Từ (1), (2), (3) suy ra p = 3 là giá trị cần tìm. 

Vậy nha còn câu b mình tạm thời chưa biết, chúc bạn học tốt

Nguyễn Thị Thùy Trâm
29 tháng 4 2018 lúc 12:06

ab+2a-b=3

a(b+2)-b=3

a(b+2)-b+2=3+2

(b+2)(a-1)=5

sau đó bạn tìm các nghiệm cho chúng thỏa mãn nhé(cho là hai số trên thuộc ước của 5 rồi tính)

Nguyễn Thị Thùy Trâm
29 tháng 4 2018 lúc 12:10

bài a và c theo mình thì bạn linh nhi nguyễn đặng thêm vào câu a cho hoàn chỉnh

câu c phải xét với số p nguyên tố bé nhất là 2 đã

sau đó thỏa mãn 3 rồi mới xét nhé

Xử Nữ Họ Nguyễn
Xem chi tiết
Lê Hồng Ngọc
Xem chi tiết
Lê Quỳnh Anh
Xem chi tiết
Lê Quỳnh Anh
3 tháng 1 2017 lúc 21:16

Mọi người giúp mình với, mình c ơn ạ ...

Nguyễn Phương Ngân
Xem chi tiết
No Name
Xem chi tiết
Nguyễn Linh Chi
15 tháng 1 2020 lúc 14:45

Câu hỏi của Black - Toán lớp 7 - Học toán với OnlineMath

Khách vãng lai đã xóa