CMR : 1/2^2 + 1/3^2 +1/4^2 +.........+ 1/n^2 < 1 ( n thuoc N ; n >= 2)
CMR :\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+......+\frac{1}{n^2}< 1\)
(n Thuoc N;n lon hon hoac = 2
Ta đặt:A=\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...\frac{1}{n^2}\)
Vì \(\frac{1}{2^2}< \frac{1}{1\cdot2}\)
\(\frac{1}{3^2}< \frac{1}{2\cdot3}\)
....
\(\frac{1}{n^2}< \frac{1}{\left(n-1\right)n}\)
=> A < \(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+...+\frac{1}{\left(n-1\right)n}\)
=> A < \(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{n-1}-\frac{1}{n}\)
=> A < \(1-\frac{1}{n}< 1\)(ĐPCM )
Vậy A < 1
CMR (3^n+3+3^n-1+2^n+2+2^n+1)chia het cho 6 voi moi n thuoc N*
Cho m , n thuoc Z thoa man m/ n = 1-1/2+1/3-1/4+...-1/1344 cmr m chia het 2017
Cho P =2 / 1.3+ 2/3.5 +...+ 2/ (2n+1).(2n+3). CMR P<1, n thuoc N*
\(P=\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{2n+1}+\frac{1}{2n+3}\)
\(P=1-\frac{1}{2n+3}\)\(
1.chung minh rang:3n.(n+1)chia het cho 6(n thuoc N
2.cmr 5n.(n+1).(n+2) chia het cho 30(n thuocN)
3.tim so tu nhien n de 7.(n-1) chia het cho 4
4.tim so tu nhien n de 5.( n-2) chia het cho 3
Cho An=1/√5(((1+√5)/2)n -((1-√5)/2)n )) CMR A2+2=A1+n∆+An An thuoc N
CMR vs moi n thuoc N
a, n+2.n+7 chia het cho 2
b, 2(n+1).(n+2) chia het cho 2 va 3
c, n(n+1).(2n+1) chia het cho 2 va 3
Cmr : n^2(n+1)+2(n+1) chia het cho 6 voi moi n thuoc Z
bai 1 cmr
a)n^3+11n chia het cho 6 voi moi n thuoc Z
b)mn(m^2-n^2)chia het cho 3 voi moi m,n thuoc Z
bai 2 tim x,y thuoc Z
a)(x-1)(3-y)=(-7)
help me