Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
datcoder
Trong không gian $O x y z$, cho điểm $mathrm{M}left(mathrm{x}_0 ; mathrm{y}_0 ; mathrm{z}_0right)$ và mặt phẳng $(P): A x+B y+C z+D0$ có vectơ pháp tuyến $vec{n}(A ; B ; C)$. Gọi N là hình chiếu vuông góc của M trên $(mathrm{P})(mathrm{H} .5 .13)$.a) Giải thích vì sao tồn tại số k để $overrightarrow{M N}k vec{n}$. Tính tọa độ của N theo k , tọa độ của M và các hệ số $mathrm{A}, mathrm{B}, mathrm{C}$, D.b) Thay tọa độ của $N$ vào phương trình mặt phẳng $(P)$ để từ đó tính $k$ theo tọa độ của $M$...
Đọc tiếp

Những câu hỏi liên quan
Hoàng Thu Thủy
Xem chi tiết
Thầy Tùng Dương
Xem chi tiết
Phương Thảo
13 tháng 5 2021 lúc 23:07

a. Xét (O) , có:
CD \(\perp\)AB = {H}
=> \(\widehat{CHA}=90^o\Rightarrow\widehat{CHE}=90^o\)

Có: \(\widehat{CMD}\)là góc nội tiếp chắn nửa đường tròn đường kính CD
=> \(\widehat{CMD}=90^o\Rightarrow\widehat{CME}=90^o\)

Xét tứ giác CMEH, có:
\(\widehat{CME}+\widehat{CHE}=90^o+90^o=180^o\)

2 góc \(\widehat{CME}\)và \(\widehat{CHE}\)là 2 góc đối nhau
=> CMEH là tứ giác nội tiếp (đpcm)

Khách vãng lai đã xóa
Lê Thanh Thảo
15 tháng 5 2021 lúc 7:52

Câu a: Có góc CHE=90 độ (vì CD\(\perp AB\) tại H)

                  Góc CMD =90 độ(góc nt chắn nửa đt)

             Mà góc CHE và góc CMD ở vị trí đối nhau

 ⇒ Tứ giác CMEH nội tiếp

Câu b:

   Xét \(\Delta NACva\Delta NMB\) có :

     Góc N chung

     Góc NCA = góc NBM (cùng chắn cung MA)

⇒ \(\Delta NAC\) đồng dạng \(\Delta NBM\) (góc góc)

  ⇒\(\dfrac{NM}{NA}\)=\(\dfrac{NB}{NC}\)⇔NM.NC=NA.NB

Câu c:

Có góc PMA=90 độ ( góc nt chắn nửa đt)→PM\(\perp\)AK

                                                            Mà IK\(\perp\)AK

                                           ⇒IK song song với MP (từ vuông góc đến song song

 

Khách vãng lai đã xóa
Trần Ngọc Lan
15 tháng 5 2021 lúc 8:28
Khách vãng lai đã xóa
Thầy Đức Anh
Xem chi tiết
Nguyễn Hoàng Minh Khuê
7 tháng 5 lúc 20:46

a)\(\left\{{}\begin{matrix}2x-4y=10\\2x-y=7\end{matrix}\right.\\ \left\{{}\begin{matrix}-3y=3\\2x-y=7\end{matrix}\right.\\ \left\{{}\begin{matrix}y=-1\\2x-\left(-1\right)=7\end{matrix}\right.\\ \left\{{}\begin{matrix}y=-1\\x=3\end{matrix}\right.\)

b)\(-\dfrac{1}{4}x^2=\dfrac{1}{2}x-2\\ \Leftrightarrow-\dfrac{1}{4}x^2-\dfrac{1}{2}x+2=0\\ \left[{}\begin{matrix}x_1=2\\x_2=-4\end{matrix}\right.\\ \left[{}\begin{matrix}y_1=-1\\y_2=-4\end{matrix}\right.\)

Thầy Đức Anh
Xem chi tiết
Thầy Tùng Dương
Xem chi tiết
Nguyễn Nam Dương
17 tháng 1 2022 lúc 10:26

a) \(A=4\sqrt{x^2+1}-2\sqrt{16\left(x^2+1\right)}+5\sqrt{25\left(x^2+1\right).}\)

\(=4\sqrt{x^2+1}-2.4\sqrt{x^2+1}+5.5\sqrt{x^2+1}\)

\(=4\sqrt{x^2+1}-8\sqrt{x^2+1}+25\sqrt{x^2+1}\)

\(=\left(4-8+25\right)\sqrt{x^2+1}\)

\(=21\sqrt{x^2+1}\)

Khách vãng lai đã xóa
Nguyễn Nam Dương
17 tháng 1 2022 lúc 10:30

b) \(B=\frac{2}{x+y}\sqrt{\frac{3\left(x+y\right)^2}{4}}\)

\(B=\frac{2}{x+y}.\frac{\sqrt{3}\left(x+y\right)}{2}\)

\(B=\frac{\sqrt{3}\left(x+y\right)}{x+y}\)

\(B=\sqrt{3}\)

Khách vãng lai đã xóa
Hà Việt	Phương
17 tháng 1 2022 lúc 11:46

undefinedDạ đậy ạ,mong dc gp

Khách vãng lai đã xóa
Pham Duong Thu
Xem chi tiết
Huỳnh Gia Âu
3 tháng 7 2019 lúc 11:55

Đề là:

\(x^{n+3}y^4:x^7y^n\) hay \(x^{n+3}y^4:\left(x^7y^n\right)\)vậy bạn? 

Thầy Tùng Dương
Xem chi tiết
Nguyễn Huy Tú
13 tháng 5 2021 lúc 14:58

a, Để pt trên có 2 nghiệm pb thì \(\Delta>0\)

\(\Delta=4m^2-4m+1+20=\left(2m-1\right)^2+20>0\forall m\)( đpcm )

Khách vãng lai đã xóa
Lê Thanh Thảo
15 tháng 5 2021 lúc 7:33

Câu a:  Ta có \(\Delta\)= (1-2m)2-4.1.5= (2m-1)2+20>0 với mọi m

    ⇒Phương trình luôn có 2 nghiệm phân biệt với mọi m

Câu b:

Để phương trình có 2 nghiệm nguyên thì  \(\left\{{}\begin{matrix}\Delta>0\left(luondung\right)\\S\in Z\\P\in Z\end{matrix}\right.\) ⇔ \(\left\{{}\begin{matrix}2m-1\in Z\\-5\in Z\left(tm\right)\end{matrix}\right.\)  

Khách vãng lai đã xóa
Trần Ngọc Lan
15 tháng 5 2021 lúc 8:28

undefined

Khách vãng lai đã xóa
Thầy Tùng Dương
Xem chi tiết
Nguyễn Minh Đăng
13 tháng 5 2021 lúc 16:11

Ta có: \(\left(a+\sqrt{a^2+9}\right)\left(b+\sqrt{b^2+9}\right)=9\)

\(\Leftrightarrow\frac{\left(a-\sqrt{a^2+9}\right)\left(a+\sqrt{a^2+9}\right)\left(b+\sqrt{b^2+9}\right)}{a-\sqrt{a^2+9}}=9\)

\(\Leftrightarrow\frac{-9\left(b+\sqrt{b^2+9}\right)}{a-\sqrt{a^2+9}}=9\)

\(\Rightarrow b+\sqrt{b^2+9}=\sqrt{a^2+9}-a\)

Tương tự chỉ ra được: \(a+\sqrt{a^2+9}=\sqrt{b^2+9}-b\)

Cộng vế 2 PT trên lại ta được:

\(a+b+\sqrt{a^2+9}+\sqrt{b^2+9}=\sqrt{a^2+9}+\sqrt{b^2+9}-a-b\)

\(\Leftrightarrow2\left(a+b\right)=0\Rightarrow a=-b\)

Thay vào M ta được:

\(M=2a^4-a^4-6a^2+8a^2-10a+2a+2026\)

\(M=a^4+2a^2-8a+2026\)

\(M=\left(a^4+2a^2-8a+5\right)+2021\)

\(M=\left[\left(a^4-a^3\right)+\left(a^3-a^2\right)+\left(3a^2-3a\right)-\left(5a-5\right)\right]+2021\)

\(M=\left(a-1\right)\left(a^3+a^2+3a-5\right)+2021\)

\(M=\left(a-1\right)^2\left(a^2+2a+5\right)+2021\)\(\ge0+2021=2021\)

Dấu "=" xảy ra khi: a = 1 => b = -1

Vậy Min(M) = 2021 khi a = 1 và b = -1

Khách vãng lai đã xóa
Dương Ngọc Hảo
15 tháng 5 2021 lúc 8:40

undefinedundefined

Khách vãng lai đã xóa
Nguyễn Đình Hùng
23 tháng 9 2021 lúc 20:07
Khách vãng lai đã xóa
Nguyễn Minh Nghĩa
Xem chi tiết
Kim Khánh Linh
Xem chi tiết
Phạm Hoàng Khánh Chi
28 tháng 4 2021 lúc 16:52

Lời giải chi tiết

Vẽ OM⊥CDOM⊥CD 

Vì OM là một phần đường kính và CD là dây của đường tròn nên ta có M là trung điểm CD hay MC=MDMC=MD   (1) (định lý)

Tứ giác AHKBAHKB có AH⊥HK; BK⊥HK⇒HA//BKAH⊥HK; BK⊥HK⇒HA//BK.

Suy ra tứ giác AHKBAHKB là hình thang.  

Xét hình thang AHKBAHKB, ta có:

OM//AH//BKOM//AH//BK (cùng vuông góc với CDCD)

mà AO=BO=AB2AO=BO=AB2

⇒MO⇒MO là đường trung bình của hình thang AHKBAHKB.

⇒MH=MK⇒MH=MK   (2)

Từ (1) và (2)  ⇒MH−MC=MK−MD⇔CH=DK⇒MH−MC=MK−MD⇔CH=DK (đpcm)

Nhận xét: Kết quả của bài toán trên không thay đổi nếu ta đổi chỗ hai điểm CC và DD cho nhau.

Khách vãng lai đã xóa
Cảnh
16 tháng 8 2021 lúc 1:10

Kẻ OM vuông góc với dây CD.

Hình thang AHKB có

AO=OB và OM / / AH / / BK

nên MH=MK                                                    (1)

OM vuông góc với dây CD nên

MC=MD                                                              (2)
Từ (1) và (2) suy ra CH=DK.

Khách vãng lai đã xóa
Quảng
16 tháng 8 2021 lúc 19:56

Kẻ OM vuông góc với dây CD.

Hình thang AHKB có

AO=OB và OM / / AH / / BK

nên MH=MK                                                    (1)

OM vuông góc với dây CD nên

MC=MD                                                              (2)
Từ (1) và (2) suy ra CH=DK.

 

Khách vãng lai đã xóa