Toán

Cao Minh
Xem chi tiết
Akai Haruma
13 tháng 3 2021 lúc 12:24

Lời giải:

a) Vì $AB, AC$ là tiếp tuyến nên $OB\perp AB, OC\perp AC$

$\Rightarrow \widehat{ABO}=\widehat{ACO}=90^0$

$\Rightarrow \widehat{ABO}+\widehat{ACO}=180^0$ nên tứ giác $ABOC$ nội tiếp.

b) Xét tam giác $ABD$ và $AEB$ có:

$\widehat{A}$ chung

$\widehat{ABD}=\widehat{AEB}$ (tính chất góc tạo bởi tiếp tuyến và dây cung thì bằng góc nt chắn cung đó)

$\Rightarrow \triangle ABD\sim \triangle AEB$ (g.g)

$\Rightarrow \frac{AB}{AE}=\frac{AD}{AB}\Rightarrow AB^2=AE.AD$

c) 

Vì $DE\parallel CM$ nên $DC=EM$
Ta có:

$\widehat{BHA}=\frac{1}{2}(\text{sđc(BD)+sđc(EM)})$

$\widehat{BOA}=\frac{1}{2}\widehat{BOC}=\frac{1}{2}(\text{sđc(BD)+sđc(CD)})$
Mà $DC=EM$ nên $\widehat{BHA}=\widehat{BOA}$ 

$\Rightarrow BHOA$ là tứ giác nội tiếp

$\Rightarrow \widehat{BHO}=\widehat{ABO}=90^0$

$\Rightarrow HO\perp DE$

$\Rightarrow H$ là trung điểm $DE$ hay $HD=HE$

Ta có đpcm.

Bình luận (0)
Akai Haruma
13 tháng 3 2021 lúc 12:26

Hình vẽ:

undefined

Bình luận (0)
Quoc Tran Anh Le
Xem chi tiết
Chillwithme
11 tháng 3 2021 lúc 22:18

Chúc mn học tốt

Bình luận (0)
Trần Thanh Phương
12 tháng 3 2021 lúc 8:51

C402:

\(1+2^x=y^2\)

\(\Leftrightarrow2^x=\left(y-1\right)\left(y+1\right)\)

Từ đó ta suy ra \(\left\{{}\begin{matrix}y-1=2^a\\y+1=2^b\end{matrix}\right.\) với \(\left\{{}\begin{matrix}a+b=x\\b>a\ge1\end{matrix}\right.\)

\(\Rightarrow2^b-2^a=y+1-y+1=2\)

\(\Leftrightarrow2^a\left(2^{b-a}-1\right)=2\)

\(\Rightarrow\left\{{}\begin{matrix}2^a=2\\2^{b-a}-1=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=1\\b-a=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=1\\b=2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=2^1+1=3\\x=1+2=3\end{matrix}\right.\)

Vậy \(\left(x;y\right)=\left(3;3\right)\) là nghiệm nguyên duy nhất của phương trình.

Bình luận (0)
Quoc Tran Anh Le
Xem chi tiết
Trần Minh Hoàng
10 tháng 3 2021 lúc 22:35

\(x+\sqrt{4-x^2}=2+x\sqrt{4-x^2}\).

ĐKXĐ: \(-2\le x\le2\).

Đặt \(\sqrt{4-x^2}=y\ge0\). Ta có \(x^2+y^2=4\Leftrightarrow\left(x+y\right)^2-2xy=4\Leftrightarrow xy=\dfrac{\left(x+y\right)^2-4}{2}\).

\(PT\Leftrightarrow x+y=2+xy\Leftrightarrow x+y=2+\dfrac{\left(x+y\right)^2-4}{2}\Leftrightarrow x+y=\dfrac{\left(x+y\right)^2}{2}\Leftrightarrow\left[{}\begin{matrix}x+y=0\\x+y=2\end{matrix}\right.\).

Với x + y = 0 ta có xy = -2. Do \(y\ge0\Rightarrow x=-\sqrt{2}\left(TMĐK\right)\).

Với x + y = 2 ta có xy = 0. Do đó x = 2 (TMĐK) hoặc x = 0 (TMĐK).

Vậy,..

Bình luận (5)
Trần Thanh Phương
11 tháng 3 2021 lúc 8:53

Bài 16: 

1) \(x+2\sqrt{7-x}=2\sqrt{x-1}+\sqrt{-x^2+8x-7}+1\)

ĐKXĐ: \(\left\{{}\begin{matrix}7-x\ge0\\x-1\ge0\end{matrix}\right.\Leftrightarrow1\le x\le7\)

\(pt\Leftrightarrow x-1+2\sqrt{7-x}-2\sqrt{x-1}-\sqrt{\left(7-x\right)\left(x-1\right)}=0\)

\(\Leftrightarrow\left(\sqrt{x-1}-2\right)\left(\sqrt{x-1}-\sqrt{7-x}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-1}=2\\\sqrt{x-1}=\sqrt{7-x}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x=4\end{matrix}\right.\) ( thỏa )

Vậy tập nghiệm của pt là \(x=\left\{4;5\right\}\)

2) Phương trình 2 mình ko rõ đề, nhưng hướng làm như sau:

ĐKXĐ: \(2x+y\ge0\)

\(\left(1\right)\Leftrightarrow2x+y+2\sqrt{2x+y}-3=0\)

\(\Leftrightarrow\left(\sqrt{2x+y}-1\right)\left(\sqrt{2x+y}+3\right)=0\)

\(\Leftrightarrow\sqrt{2x+y}=1\)

\(\Leftrightarrow2x+y=1\)

\(\Leftrightarrow y=1-2x\)

Thay vào pt 2 rồi tìm nghiệm.

Bình luận (0)
Trần Thanh Phương
11 tháng 3 2021 lúc 19:00

Bài 22:

1) \(\sqrt{x}+2\sqrt{y-1}+3\sqrt{z-2}=\dfrac{1}{2}\left(x+y+z+11\right)\)

Đặt \(\left\{{}\begin{matrix}\sqrt{x}=a\\\sqrt{y-1}=b\\\sqrt{z-2}=c\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=a^2\\y=b^2+1\\z=c^2+2\end{matrix}\right.\) \(\left(a;b;c\ge0\right)\)

\(pt\Leftrightarrow a+2b+3c=\dfrac{1}{2}\left(a^2+b^2+c^2+14\right)\)

\(\Leftrightarrow a^2+b^2+c^2-2a-4b-6z+14=0\)

\(\Leftrightarrow\left(a-1\right)^2+\left(b-2\right)^2+\left(c-3\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=1\\b=2\\c=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=5\\z=11\end{matrix}\right.\)

Vậy...

Bình luận (0)
Quoc Tran Anh Le
Xem chi tiết
Trần Minh Hoàng
8 tháng 3 2021 lúc 22:44

Mò nghiệm bằng máy tính cũng may ra :))

Ta có \(x^5-x^4-x^3-11x^2+25x-14=0\)

\(\Leftrightarrow\left(x-2\right)\left(x^4+x^3+x^2-9x+7\right)\).

Ta có \(x^4+x^3+x^2-9x+7=\left(x^2+\dfrac{1}{2}x-1\right)^2+\left(\dfrac{11}{4}x^2-8x+6\right)>0\).

Vậy x = 2 là nghiệm duy nhất của pt.

Bình luận (0)
Hồng Phúc
8 tháng 3 2021 lúc 21:14

Không có mô tả.

Bình luận (0)
Quoc Tran Anh Le
Xem chi tiết
Nguyễn Thành Trương
8 tháng 3 2021 lúc 14:42

b)Hệ phương trình tương đương:

 \(\begin{array}{l} \left\{ \begin{array}{l} {\left( {xy + x} \right)^2} + 2\left( {xy + y} \right) = 3\\ xy\left( {x + 1} \right)\left( {y + 1} \right) = 1 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} {\left( {xy + x} \right)^2} + 2\left( {xy + y} \right) = 3\\ \left( {xy + y} \right)\left( {xy + x} \right) = 1 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} {a^2} + 2b = 3\\ ab = 1 \end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l} a = 1,b = 1\\ a = - 2,b = - \dfrac{1}{2} \end{array} \right. \Leftrightarrow \left[ \begin{array}{l} \left\{ \begin{array}{l} xy + x = 1\\ xy + y = 1 \end{array} \right.\\ \left\{ \begin{array}{l} xy + x = - 2\\ xy + y = - \dfrac{1}{2} \end{array} \right. \end{array} \right. \Leftrightarrow \left[ \begin{array}{l} x = y = \dfrac{{ - 1 - \sqrt 5 }}{2}\\ x = y = \dfrac{{\sqrt 5 - 1}}{2} \end{array} \right. \end{array}\)

KL:

Bình luận (0)
Cherry
8 tháng 3 2021 lúc 17:42

b)Hệ phương trình tương đương:

 

Bình luận (0)
Bùi Đức Anh
Xem chi tiết
Akai Haruma
8 tháng 3 2021 lúc 21:21

Lời giải:

*** Mình chưa thấy điểm $I$ có vai trò gì trong bài này.

Gọi $D$ là giao điểm $BC, AN$ và $L$ là giao $AN$ với $(O)$

Dễ thấy $\triangle ABN=\triangle MCN$ do:

$AB=MC$ (tính chất cung bị chặn bởi 2 dây song song)

$NB=NC$

$\widehat{ABN}=\frac{1}{2}\text{sđc(AB>)}=\frac{1}{2}\text{sđc(MC>)}=\widehat{MCN}$

Do đó:

$\widehat{BAD}=\widehat{BAN}=\widehat{CMN}=\widehat{CAH}$

$\Rightarrow \widehat{BAH}=\widehat{CAD}$

Ta có:

$\frac{HB}{CH}=\frac{S_{ABH}}{S_{ACH}}=\frac{AB.AH.\sin BAH}{AC.AH.\sin CAH}=\frac{AB.\sin BAH}{AC\sin CAH}$

$=\frac{AB}{AC}.\frac{\sin BAH}{\sin CAH}=\frac{AB}{AC}.\frac{\sin CAD}{\sin BAD}=\frac{AB}{AC}.\frac{\sin CAL}{\sin BAL}=\frac{AB}{AC}.\frac{\sin CBL}{\sin BCL}=\frac{AB}{AC}.\frac{LC}{BL}(*)$

Mà:

Dễ cm $\triangle ABN\sim \triangle BLN, \triangle ACN\sim \triangle CLN$

$\Rightarrow \frac{AB}{BL}=\frac{BN}{LN}=\frac{CN}{LN}=\frac{AC}{CL}$

$\Rightarrow \frac{LC}{BL}=\frac{AC}{AB}(**)$

Từ $(*); (**)\Rightarrow \frac{BH}{HC}=\frac{AB}{AC}.\frac{AC}{AB}=1$

$\Rightarrow BH=HC$ nên $H$ là trung điểm của $BC$

Bình luận (2)
Akai Haruma
8 tháng 3 2021 lúc 3:02

Hình vẽ:

undefined

Bình luận (1)
Akai Haruma
8 tháng 3 2021 lúc 3:04

** Đây là bài toán liên quan đến đường đẳng giác, đường đối trung. Bạn có thể google search để hiểu chuyên sâu hơn về tính chất của đường này.

Bình luận (0)
NGUYỄN MINH HUY
Xem chi tiết
Nguyễn Việt Lâm
8 tháng 3 2021 lúc 5:17

a.

\(\Leftrightarrow na_{n+2}-na_{n+1}=2\left(n+1\right)a_{n+1}-2\left(n+1\right)a_n\)

\(\Leftrightarrow\dfrac{a_{n+2}-a_{n+1}}{n+1}=2.\dfrac{a_{n+1}-a_n}{n}\)

Đặt \(b_n=\dfrac{a_{n+1}-a_n}{n}\Rightarrow\left\{{}\begin{matrix}b_1=\dfrac{a_2-a_1}{1}=1\\b_{n+1}=2b_n\end{matrix}\right.\) \(\Rightarrow b_n=2^{n-1}\Rightarrow a_{n+1}-a_n=n.2^{n-1}\)

\(\Leftrightarrow a_{n+1}-\left[\dfrac{1}{2}\left(n+1\right)-1\right]2^{n+1}=a_n-\left[\dfrac{1}{2}n-1\right]2^n\)

Đặt \(c_n=a_n-\left[\dfrac{1}{2}n-1\right]2^n\Rightarrow\left\{{}\begin{matrix}c_1=a_1-\left[\dfrac{1}{2}-1\right]2^1=2\\c_{n+1}=c_n=...=c_1=2\end{matrix}\right.\)

\(\Rightarrow a_n=\left[\dfrac{1}{2}n-1\right]2^n+2=\left(n-2\right)2^{n-1}+2\)

Bình luận (0)
Nguyễn Việt Lâm
8 tháng 3 2021 lúc 5:21

b.

Câu b này đề sai

Với \(n=1\Rightarrow\sqrt{a_1-1}=0< \dfrac{1\left(1+1\right)}{2}\)

Với \(n=2\Rightarrow\sqrt{a_1-1}+\sqrt{a_2-1}=0+1< \dfrac{2\left(2+1\right)}{2}\)

Có lẽ đề đúng phải là: \(\sqrt{a_1-1}+\sqrt{a_2-1}+...+\sqrt{a_n-1}\ge\dfrac{n\left(n-1\right)}{2}\)

Ta sẽ chứng minh: \(\sqrt{a_n-1}\ge n-1\) ; \(\forall n\in Z^+\)

Hay: \(\sqrt{\left(n-2\right)2^{n-1}+1}\ge n-1\)

\(\Leftrightarrow\left(n-2\right)2^{n-1}+2n\ge n^2\)

- Với \(n=1\Rightarrow-1+2\ge1^2\) (đúng)

- Với \(n=2\Rightarrow0+4\ge2^2\) (đúng)

- Giả sử BĐT đúng với \(n=k\ge2\) hay \(\left(k-2\right)2^{k-1}+2k\ge k^2\)

Ta cần chứng minh: \(\left(k-1\right)2^k+2\left(k+1\right)\ge\left(k+1\right)^2\)

\(\Leftrightarrow\left(k-1\right)2^k+1\ge k^2\)

Thật vậy: \(\left(k-1\right)2^k+1=2\left(k-2\right)2^{k-1}+2^k+1\ge2k^2-4k+2^k+1\)

\(\ge2k^2-4k+5=k^2+\left(k-2\right)^2+1>k^2\) (đpcm)

Do đó:

\(\sqrt{a_1-1}+\sqrt{a_2-1}+...+\sqrt{a_n-1}>0+1+...+n-1=\dfrac{n\left(n-1\right)}{2}\)

Bình luận (0)
Nguyễn Việt Lâm
9 tháng 3 2021 lúc 1:19

c.

Ta có:

\(\dfrac{a_n}{3^n}=\dfrac{\left(n-2\right)2^{n-1}+2}{3^n}=\dfrac{n}{2\left(\dfrac{3}{2}\right)^n}-\left(\dfrac{2}{3}\right)^n+\dfrac{2}{3^n}\)

Đặt \(S_n=\sum\limits^n_{i=1}\dfrac{a_n}{3^n}=\dfrac{1}{2}\sum\limits^n_{i=1}\dfrac{n}{\left(\dfrac{3}{2}\right)^n}-\sum\limits^n_{j=1}\left(\dfrac{2}{3}\right)^n+2\sum\limits^n_{k=1}\dfrac{1}{3^n}=\dfrac{1}{2}S'-2+2\left(\dfrac{2}{3}\right)^n+1-\dfrac{1}{3^n}\)

Xét \(S'=\sum\limits^n_{i=1}\dfrac{n}{\left(\dfrac{3}{2}\right)^n}\)

\(S'=\sum\limits^n_{i=1}\dfrac{n}{\left(\dfrac{3}{2}\right)^n}=\dfrac{1}{\dfrac{3}{2}}+\dfrac{2}{\left(\dfrac{3}{2}\right)^2}+\dfrac{3}{\left(\dfrac{3}{2}\right)^3}+...+\dfrac{n}{\left(\dfrac{3}{2}\right)^n}\)

\(\dfrac{3}{2}S'=1+\dfrac{2}{\dfrac{3}{2}}+\dfrac{3}{\left(\dfrac{3}{2}\right)^2}+...+\dfrac{n}{\left(\dfrac{3}{2}\right)^{n-1}}\)

\(\Rightarrow\dfrac{1}{2}S'=1+\dfrac{1}{\left(\dfrac{3}{2}\right)}+\dfrac{1}{\left(\dfrac{3}{2}\right)^2}+...+\dfrac{1}{\left(\dfrac{3}{2}\right)^{n-1}}-\dfrac{n}{\left(\dfrac{3}{2}\right)^n}=\dfrac{1-\left(\dfrac{2}{3}\right)^n}{1-\dfrac{2}{3}}=3-3\left(\dfrac{2}{3}\right)^n-n\left(\dfrac{2}{3}\right)^n\)

\(\Rightarrow S_n=2-\left(\dfrac{2}{3}\right)^n-\dfrac{1}{3^n}-n\left(\dfrac{2}{3}\right)^n\)

\(\Rightarrow\lim\left(S_n\right)=2\)

Bình luận (0)
Quoc Tran Anh Le
Xem chi tiết
tthnew
6 tháng 3 2021 lúc 12:17

Câu 285

a) ĐKXĐ: $x\le 10.$

 \(PT\Leftrightarrow\left(\dfrac{x^3+7x^2+18x+4}{\sqrt{10-x}}-10\right)+\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left[\dfrac{\left(x^5+15x^4+100x^3+360x^2+740x+984\right)}{\sqrt{10-x}\left(x^3+7x^2+8x+4+10\sqrt{10-x}\right)}+1\right]=0\)

Rõ ràng biểu thức trong ngoặc vuông vô nghiệm.

Vậy $x=1$ (TMĐKXĐ)

b) Đặt $t=ab+bc+ca.$

 \(a,b,c\in\left[0,1\right]\Rightarrow\left(a-1\right)\left(b-1\right)\ge0\Rightarrow ab\ge a+b-1.\) (1)

Từ (1) suy ra \(3abc\ge\sum c\left(a+b-1\right)=2t-\left(a+b+c\right)\ge2t-3\)

Cũng do $a,b,c\in \left[0,1\right]$ suy ra \(\left(a-1\right)\left(b-1\right)\left(c-1\right)\le0\Rightarrow abc\le\sum\left(ab-a\right)+1\)

Do đó"\(VT\le\sum\dfrac{a}{1+bc}+\sum\left(ab-a\right)+1\)

\(=\sum\left(\dfrac{a}{1+bc}-a\right)+\sum ab+1\)

\(=-abc\sum\dfrac{1}{1+bc}+ab+bc+ca+1\)

\(\le t+1-\dfrac{9abc}{t+3}\le t+1-\dfrac{3\left(2t-3\right)}{t+3}\le\dfrac{5}{2}\) 

\(\Leftrightarrow\left(2t-3\right)\left(3-t\right)\ge0\)

Do \(t\le\dfrac{\left(a+b+c\right)^2}{3}=3\) nên nếu $ab+bc+ca\ge \dfrac{3}{2}$ thì bất đẳng thức đúng.

Trong trường hợp ngược lại ta có \(VT\le t+1-\dfrac{9abc}{t+3}\le t+1\le\dfrac{3}{2}+1=\dfrac{5}{2}\) (đpcm)

Hoàn tất chứng minh.

Đẳng thức xảy ra khi (bạn đọc tự xét)

Bình luận (2)
Nguyễn Trọng Chiến
6 tháng 3 2021 lúc 13:37

290

Ta có \(\dfrac{a^4b}{a^2+1}=a^2b-\dfrac{a^2b}{a^2+1}\ge a^2b-\dfrac{a^2b}{2a}=a^2b-\dfrac{ab}{2}\)

Chứng minh tương tự ta được:  

\(\dfrac{b^4c}{b^2+1}\ge b^2c-\dfrac{bc}{2};\dfrac{c^4a}{c^2+1}\ge c^2a-\dfrac{ca}{2}\)

\(\Rightarrow\dfrac{a^4b}{a^2+1}+\dfrac{b^4c}{b^2+1}+\dfrac{c^4a}{c^2+1}\ge a^2b+b^2c+c^2a-\dfrac{ab}{2}-\dfrac{bc}{2}-\dfrac{ca}{2}\)

Áp dụng bđt Cô-si:

\(a^2b+a^2b+b^2c\ge3\sqrt[3]{a^2b\cdot a^2b\cdot b^2c}=3\sqrt[3]{a^3b^3\cdot abc}=3ab\)

Tương tự: \(b^2c+b^2c+c^2a\ge3bc;c^2a+c^2a+a^2b\ge3ca\)

\(\Rightarrow a^2b+a^2b+b^2c+b^2c+b^2c+c^2a+c^2a+c^2a+a^2b\ge3ab+3bc+3ca\Rightarrow3\left(a^2b+b^2c+c^2a\right)\ge3\left(ab+bc+ca\right)\Rightarrow a^2b+b^2c+c^2a\ge ab+bc+ca\)

\(\Rightarrow\dfrac{a^4b}{a^2+1}+\dfrac{b^4c}{b^2+1}+\dfrac{c^4a}{c^2+1}\ge a^2b+b^2c+c^2a-\dfrac{1}{2}\left(ab+bc+ca\right)\ge ab+bc+ca-\dfrac{1}{2}\left(ab+bc+ca\right)=\dfrac{1}{2}\left(ab+bc+ca\right)\ge\dfrac{3}{2}\sqrt[3]{\left(abc\right)^2}=\dfrac{3}{2}\) Dấu = xảy ra \(\Leftrightarrow a=b=c=1\)

Bình luận (0)
Hồng Phúc
6 tháng 3 2021 lúc 13:57
Bình luận (2)
Quoc Tran Anh Le
Xem chi tiết
Hồng Phúc
6 tháng 3 2021 lúc 5:44

C280:

Áp dụng BĐT AM-GM và BĐT BSC:

\(\dfrac{1}{\sqrt{x+3y}}+\sqrt{x+3y}\ge2\Rightarrow\dfrac{1}{\sqrt{x+3y}}\ge2-\sqrt{x+3y}\)

\(\dfrac{1}{\sqrt{y+3z}}+\sqrt{y+3z}\ge2\Rightarrow\dfrac{1}{\sqrt{y+3z}}\ge2-\sqrt{y+3z}\)

\(\dfrac{1}{\sqrt{z+3x}}+\sqrt{z+3x}\ge2\Rightarrow\dfrac{1}{\sqrt{z+3x}}\ge2-\sqrt{z+3x}\)

\(\Rightarrow P=\dfrac{1}{\sqrt{x+3y}}+\dfrac{1}{\sqrt{y+3z}}+\dfrac{1}{\sqrt{z+3x}}\)

\(\ge6-\left(\sqrt{x+3y}+\sqrt{y+3z}+\sqrt{z+3x}\right)\)

\(\ge6-\sqrt{3\left(x+3y+y+3z+z+3x\right)}\)

\(=6-\sqrt{12\left(x+y+z\right)}=3\)

\(minP=3\Leftrightarrow a=b=c=\dfrac{1}{4}\)

Bình luận (0)
 Mashiro Shiina
6 tháng 3 2021 lúc 10:06

Bài 7) 

\(bđt\Leftrightarrow4\left(a+b+c\right)\left(a^2+b^2+c^2\right)-3\left(a^3+b^3+c^3\right)\ge\left(a+b+c\right)^3\)

\(\Leftrightarrow a^3+b^3+c^3+4ab\left(a+b\right)+4bc\left(b+c\right)+4ac\left(a+c\right)\ge\left(a+b+c\right)^3\)

\(\Leftrightarrow4ab\left(a+b\right)+4bc\left(b+c\right)+4ac\left(a+c\right)\ge3ab\left(a+b\right)+3bc\left(b+c\right)+3ac\left(a+c\right)+6abc\)\(\Leftrightarrow ab\left(a+b\right)+bc\left(b+c\right)+ac\left(a+c\right)\ge6abc\)

\(\Leftrightarrow\dfrac{a+b}{c}+\dfrac{b+c}{a}+\dfrac{c+a}{b}\ge6\)

(Đúng theo Cô Si)

"=" khi a=b=c=1

Bình luận (0)
Nguyễn Trọng Chiến
6 tháng 3 2021 lúc 14:09

281:

Ta có:\(ab+bc+ca=3abc\Rightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=3\)

\(\dfrac{1}{\sqrt{a^3+b}}\le\dfrac{1}{\sqrt{2\sqrt{a^3b}}}=\dfrac{1}{\sqrt{2a}\cdot\sqrt[4]{ab}}\le\dfrac{1}{2\sqrt{2a}}\cdot\left(\dfrac{1}{\sqrt{a}}+\dfrac{1}{\sqrt{b}}\right)=\dfrac{1}{2\sqrt{2}}\left(\dfrac{1}{a}+\dfrac{1}{\sqrt{ab}}\right)\le\dfrac{1}{2\sqrt{2}}\cdot\left[\dfrac{1}{a}+\dfrac{1}{2}\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\right]=\dfrac{1}{2\sqrt{2}}\cdot\left(\dfrac{1}{a}+\dfrac{1}{2a}+\dfrac{1}{2b}\right)\) Chứng minh tương tự:

\(\dfrac{1}{\sqrt{b^3+c}}\le\dfrac{1}{2\sqrt{2}}\cdot\left(\dfrac{1}{b}+\dfrac{1}{2b}+\dfrac{1}{2c}\right);\dfrac{1}{\sqrt{c^3+a}}\le\dfrac{1}{2\sqrt{2}}\cdot\left(\dfrac{1}{c}+\dfrac{1}{2c}+\dfrac{1}{2a}\right)\)\(\Rightarrow\dfrac{1}{\sqrt{a^3+b}}+\dfrac{1}{\sqrt{b^3+c}}+\dfrac{1}{\sqrt{c^3+a}}\le\dfrac{1}{2\sqrt{2}}\left(\dfrac{1}{a}+\dfrac{1}{2a}+\dfrac{1}{2b}+\dfrac{1}{b}+\dfrac{1}{2b}+\dfrac{1}{2c}+\dfrac{1}{c}+\dfrac{1}{2c}+\dfrac{1}{2a}\right)=\dfrac{1}{2\sqrt{2}}\left(\dfrac{2}{a}+\dfrac{2}{b}+\dfrac{2}{c}\right)=\dfrac{3}{\sqrt{2}}\) Dấu = xảy ra \(\Leftrightarrow a=b=c=1\)

Bình luận (0)
Quoc Tran Anh Le
Xem chi tiết
Trần Minh Hoàng
4 tháng 3 2021 lúc 19:49

Bài nào đó k ghi số nên không bt gọi ntn:

Chuẩn hóa x + y + z = 3. Ta cần cm \(x^2y+y^2z+z^2x+xyz\le4\).

Giả sử \(z=mid\left\{x,y,z\right\}\Rightarrow\left(x-z\right)\left(y-z\right)\le0\)

\(\Leftrightarrow xy+z^2\le xz+yz\)

\(\Leftrightarrow x^2y+xz^2\le x^2z+xyz\).

Từ đó \(x^2y+y^2z+z^2x+xyz\le x^2z+xyz+y^2z+xyz=z\left(x+y\right)^2\le\dfrac{\dfrac{\left(2z+x+y+x+y\right)^3}{27}}{2}=4\).

 

Bình luận (0)
Hồng Phúc
4 tháng 3 2021 lúc 19:53

Câu cuối:

Áp dụng BĐT BSC:

\(\dfrac{a}{\sqrt{a^2+b+c}}=\sqrt{\dfrac{a^2}{a^2+b+c}}=\sqrt{\dfrac{a^2\left(1+b+c\right)}{\left(a^2+b+c\right)\left(1+b+c\right)}}\le\sqrt{\dfrac{a^2\left(1+b+c\right)}{\left(a+b+c\right)^2}}\le\dfrac{a\sqrt{1+b+c}}{a+b+c}\)

Tương tự \(\dfrac{b}{\sqrt{b^2+c+a}}=\le\dfrac{b\sqrt{1+c+a}}{a+b+c}\)\(\dfrac{c}{\sqrt{c^2+a+b}}=\le\dfrac{c\sqrt{1+a+b}}{a+b+c}\)

Khi đó \(VT\le\Sigma\left(\dfrac{a}{a+b+c}.\sqrt{1+b+c}\right)\)

Giả sử \(a\ge b\ge c\)

Áp dụng BĐT Chebyshev với bộ \(\dfrac{a}{a+b+c};\dfrac{b}{a+b+c};\dfrac{c}{a+b+c}\) và \(\sqrt{1+b+c};\sqrt{1+c+a};\sqrt{1+a+b}\):

\(VT\le\dfrac{1}{3}\Sigma\dfrac{a}{a+b+c}.\Sigma\sqrt{1+a+b}=\dfrac{\Sigma\sqrt{1+a+b}}{3}\)

\(\le\dfrac{\sqrt{3\left(3+2a+2b+2c\right)}}{3}\)

\(\le\dfrac{\sqrt{9+6\sqrt{3\left(a^2+b^2+c^2\right)}}}{3}=\sqrt{3}\)

Đẳng thức xảy ra khi \(a=b=c=1\)

Bình luận (0)
Nguyễn Trọng Chiến
4 tháng 3 2021 lúc 19:54

Bài 1 GPT: \(x^2+2018\sqrt{2x^2+1}=x+1+2018\sqrt{x^2+x+1}\)(1) ĐKXĐ: \(\forall x\in R\)

(1) \(\Leftrightarrow x^2-x-1+2018\sqrt{2x^2+1}-2018\sqrt{x^2+x+1}=0\)

\(\Rightarrow x^2-x-1+2018\cdot\dfrac{\left(\sqrt{2x^2+1}-\sqrt{x^2+x+2}\right)\left(\sqrt{2x^2+1}+\sqrt{x^2+x+2}\right)}{\sqrt{2x^2+1}+\sqrt{x^2+x+2}}=0\)

\(\Leftrightarrow x^2-x-1+2018\cdot\dfrac{\left(x^2-x-1\right)}{\sqrt{2x^2+1}+\sqrt{x^2+x+2}}=0\)

\(\Leftrightarrow\left(x^2-x-1\right)\left(1+\dfrac{2018}{\sqrt{2x^2+1}+\sqrt{x^2+x+2}}\right)=0\)

\(\Leftrightarrow x^2-x-1=0\) vì \(1+\dfrac{2018}{\sqrt{2x^2+1}+\sqrt{x^2+x+2}}>1>0\forall x\)

\(\Leftrightarrow x^2-x+\dfrac{1}{4}-\dfrac{5}{4}=0\Leftrightarrow\left(x-\dfrac{1}{2}\right)^2=\dfrac{5}{4}\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1+\sqrt{5}}{2}\\x=\dfrac{1-\sqrt{5}}{2}\end{matrix}\right.\) Vậy...

Bình luận (1)